Convexity 0000	Team semantics 000000	Expressive completeness	Convex Union-closed Properties	Convex properties	Conclusion 00

Convex Team Logics

Aleksi Anttila & Søren Brinck Knudstorp

ILLC, University of Amsterdam

Workshop on the Occasion of Marco Degano's Doctoral Defense

Convexity •000	Team semantics 000000	Expressive completeness 00	Convex Union-closed Properties	Convex properties	Conclusion 00
Plan for	the talk				

- Convexity: What is it and why is it interesting?
- Team Logics: Connectives and notions of propositionhood.
- Results: Expressive completeness for convex team logics.

Degano, 2024: The underlying idea is that the meaning of expressions should denote a convex 'region' provided a suitable notion of meaning space. Convexity would be violated when gaps are present in the underlying 'region' that expressions denote.

Convexity

Convexity as Linguistic/Cognitive Universal

1. Generalized quantifiers:

Team semantics

Barwise & Cooper, 1981: The simple NP's of any natural language express monotone quantifiers or conjunctions of monotone quantifiers.

Van Benthem, 1984: Monotonicity is a strong condition, whose validity for arbitrary logical constants is debatable. Nevertheless, one does expect a certain "smooth" behaviour of reasonable quantifiers; and, therefore, the following notion of continuity [ed: convexity] has a certain interest...

2. Concept formation:

Gärdenfors, 2000: A central feature of our cognitive mechanisms is that we assign properties to the objects that we observe [...] I primarily want to pin down the properties that are, in a sense, natural to our way of thinking [...] The third and most powerful criterion of a region is the following, which also relies on betweenness: A subset C of a conceptual space S is said to be convex if, for all points x and y in C, all points between x and y are also in C.

Convexity as Linguistic/Cognitive Universal

3. Indefinites:

Degano, 2024: We can then provide a more grounded explanation for the absence of indefinites that lexicalize only the SK and NS functions as a violation of the convexity constraint.

Definition (Convexity over Teams)

A set of teams \mathcal{P} is convex iff for all t, t', t'' such that $t \subseteq t' \subseteq t''$, if $t \in \mathcal{P}$ and $t'' \in \mathcal{P}$, then $t' \in \mathcal{P}$.

Team semantics

Expressive completeness

Convex Union-closed Properties

Convex properties

Conclusion

(Propositional) team logics: connectives

Traditionally (in, e.g., CPC), formulas φ are evaluated at single valuations $v : \operatorname{Prop} \rightarrow \{0, 1\},\$

 $\mathbf{v} \models \varphi$.

In team semantics, formulas φ are evaluated at sets ('teams') of valuations $t \subseteq \{v \mid v : \mathbf{Prop} \rightarrow \{0, 1\}\},\ t \models \varphi.$

Definition (some team-semantic clauses)

For $t \subseteq \{v \mid v : \mathbf{Prop} \rightarrow \{0, 1\}\}$, we define

$t \models p$	iff	$\forall v \in t : v(p) = 1,$
$t\models\varphi\wedge\psi$	iff	$t\models arphi$ and $t\models \psi,$
$t\models \varphi \lor \psi$	iff	there exist t', t'' such that $t' \models \varphi$;
		$t^{\prime\prime} \models \psi$; and $t = t^\prime \cup t^{\prime\prime}$,
$t\models \varphi \! \lor \! \psi$	iff	$t\models \varphi \text{ or } t\models \psi.$

Convexity 0000	Team semantics 0●0000	Expressive completeness	Convex Union-closed Properties	Convex properties	Conclusion 00
New cor	nnectives				

On connectives:

Fact 1: Team semantics for $\{\neg, \land, \lor\}$ gives us classical logic.

Fact 2: In classical logic, $\{\neg, \land, \lor\}$ is famously functionally complete: all other connectives are definable by these.

Fact 3: In team semantics, $\{\neg, \land, \lor\}$ can only capture a fraction of the expressible connectives. For example, \lor is not definable using $\{\neg, \land, \lor\}$.

Consequence: We have a semantic framework for expressions beyond classical assertions, such as questions.

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for considering new connectives!

ty Team semantics 00000 Expressive completeness

Convex Union-closed Properties

Convex properties

Conclusion

(Propositional) team logics: propositionhood

- Given any condition-based semantics, we obtain a notion of propositionhood defined as a set of conditions. *Slogan:* Proposition = a set of conditions.
- In team semantics, conditions are teams.
- So, propositions are sets of teams. Caveat: The standard terminology is not 'propositions' but 'properties'.

Example

Since our meaning space now has structure (as powersets), we can consider natural restrictions on what a proposition is. Or what different kinds of propostions/meanings there are! For instance, assertions contra questions. (Note the analogy with generalized quantifiers.) vexity Team semantics

Expressive complete

Convex Union-closed Properties

Convex properties

Conclusion 00

Notions of propositionhood (closure properties)

Take-away: Teams provide for ways to express meanings not readily expressible in single-valuation semantics; and thus for considering new notions of propositionhood!

Definition (some restrictions on propositionhood)

 ϕ is downward closed: $[s \models \phi \text{ and } t \subseteq s] \implies t \models \phi$ ϕ is union closed: $[s \models \phi \text{ for all } s \in S \neq \emptyset] \implies \bigcup S \models \phi$ ϕ has the empty team property: $\emptyset \models \phi$ ϕ is flat: $s \models \phi \iff \{v\} \models \phi \text{ for all } v \in s$ ϕ is convex: $[s \models \phi, u \models \phi \text{ and } s \subseteq t \subseteq u] \implies t \models \phi$

Convexity generalizes downward closure:

downward closed \implies convex

 Convexity
 Team semantics
 Expressive completeness
 Convex Union-closed Properties

 0000
 000000
 00
 00
 00
 00

Interface of connectives and propositionhood

The choice of connectives and the corresponding notion of propositionhood are closely connected. Here are some examples:

- Classical formulas are flat (so union closed) [i.e., classical assertions are flat]
- Formulas with \vee might not be union closed. [i.e., questions are not union closed]
- Consider the *epistemic might* operator •, defined as

$$s \models \bullet \phi \iff \exists t \subseteq s : t \neq \phi \& t \models \phi.$$

Formulas with ${\mbox{\sc \circ}}$ are not downward closed [i.e., epistemic uncertainty is not persistent]

Convexity 0000	Team semantics 00000●	Expressive completeness	Convex Union-closed Properties	Convex properties	Conclusion 00
Convexit	су.				

Recall Degano, 2024: The underlying idea is that the meaning of expressions should denote a convex 'region' provided a suitable notion of meaning space

To summarize, we paraphrase: The underlying idea is that $\|\varphi\|$ should denote a convex 'region': if $s, u \in \|\varphi\|$ and $s \subseteq t \subseteq u$, then $t \in \|\varphi\|$

Convexity 0000	Team semantics 000000	Expressive completeness •0	Convex Union-closed Properties	Convex properties	Conclusion 00
Expressiv	ve completer	ness			

We answer an open question concerning the expressive power of a certain propositional team logic by showing it is capable of capturing the full range of convex and union-closed propositions (properties). We also find logics capable of expressing all convex propositions.

We say a logic L is *expressively complete* for a class of properties $\mathbb{P}(||L|| = \mathbb{P})$ if

(i) $||L|| \subseteq \mathbb{P}$: each property $||\phi||$ (where $\phi \in L$) is in \mathbb{P}

(ii) $\mathbb{P} \subseteq ||L||$: each property $\mathcal{P} \in \mathbb{P}$ can be expressed by a formula of L: $\mathcal{P} = ||\phi||$ where $\phi \in L$.

Example: Propositional dependence logic is expressively complete for the class of downward-closed (propositional) team properties

$$\mathbb{D} = \{\mathcal{P} \mid [t \in \mathcal{P} \& s \subseteq t] \implies s \in \mathcal{P}\}$$

Propositional inquisitive logic is also expressively complete for $\mathbb{D}.$

Convexity Te	am semantics E	xpressive completeness	Convex Union-closed Properties	Convex properties	Conclusion 00
--------------	----------------	------------------------	--------------------------------	-------------------	------------------

We consider one propositional logic complete for the class of convex and union-closed (propositional) team properties

$$\mathbb{CU} = \{\mathcal{P} \mid [[s, u \in \mathcal{P} \& s \subseteq t \subseteq u] \implies t \in \mathcal{P}] \& [s, u \in \mathcal{P} \implies s \cup u \in \mathcal{P}]\}.$$

This logic is the propositional fragment of Aloni's Bilateral State-based Modal Logic.

We also consider two logics complete for the class of convex (propositional) team properties

$$\mathbb{C} = \{\mathcal{P} \mid [s, u \in \mathcal{P} \& s \subseteq t \subseteq u] \implies t \in \mathcal{P}\}.$$

These logics are (in a sense) convex variants of the downward-closed logics propositional dependence logic and propositional inquisitive logic.

Team semantics

Expressive completeness

Convex Union-closed Properties

Convex properties

 V_{pq}

 V_D

Va

A Logic for Convex Union-closed Properties

Syntax of classical propositional logic (with \vee) **PL**_{\vee}

 $\alpha ::= p \mid \perp \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$

We extend PL_{v} with the nonemptiness atom NE—syntax of PL_{v} (NE):

$$\phi ::= \boldsymbol{p} \mid \bot \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid \text{NE}$$

where $\alpha \in \mathbf{PL}_{\mathcal{V}}$.

$$t \models \text{NE} \iff t \neq \emptyset$$

Aloni's (2022) Bilateral State-based Modal Logic is a modal extension of $PL_{V}(NE)$ (and is similarly complete for convex union-closed modal team properties in the modal setting). Aloni uses NE to model a process of pragmatic enrichment which is then used to account for free choice inferences and other phenomena. E.g..:

> You may have coffee or tea ~ You may have coffee and you may have tea. $\Diamond ((c \land NE) \lor (t \land NE)) \models \Diamond c \land \Diamond t$

Convexity 0000	Team semantics 000000	Expressive completeness	Convex Union-closed Properties ○●	Convex properties	Conclusion 00
000	000000	00		00000	00

To show $\mathbf{PL}_{\vee}(NE) = \mathbb{CU}$, we show:

(i) $\|\mathbf{PL}_{\vee}(NE)\| \subseteq \mathbb{CU}$: by induction.

(ii) $\mathbb{CU} \subseteq ||\mathbf{PL}_{\vee}(NE)||$: by constructing characteristic formulas for properties in \mathbb{CU} .

Characteristic formulas for valuations and teams:

$$\begin{array}{l} \chi_{\nu} \coloneqq \bigwedge \{ p \mid v \models p \} \land \bigwedge \{ \neg p \mid v \not\models p \} \\ w \models \chi_{\nu} \iff w = \nu \end{array} \qquad \begin{array}{l} \chi_{s} \coloneqq \bigvee_{v \in s} \chi_{v} \\ t \models \chi_{s} \iff t \subseteq s \end{array}$$

Characteristic formulas for flat (downward- and union-closed) properties:

$$t \models \bigvee_{s \in \mathcal{P}} \chi_s \iff t \subseteq \bigcup \mathcal{P}$$

Characteristic formulas for upward-closed properties:

$$t \models \bigwedge_{v_1 \in t_1, \dots, v_n \in t_n} \left(\left(\left(\chi_{v_1} \lor \dots \lor \chi_{v_n} \right) \land \operatorname{NE} \right) \lor \top \right) \iff \exists s \in \mathcal{P} = \{t_1, \dots, t_n\} : s \subseteq t$$

Characteristic formulas for convex union-closed properties:

$$t \models \bigvee_{\mathsf{v} \in \mathsf{s}} \chi_{\mathsf{v}} \land \bigwedge_{\mathsf{v}_1 \in t_1, \dots, \mathsf{v}_n \in t_n} (((\chi_{\mathsf{v}_1} \lor \dots \lor \chi_{\mathsf{v}_n}) \land \operatorname{NE}) \lor \mathsf{T}) \iff \exists \mathsf{s} \in \mathcal{P} = \{t_1, \dots, t_n\} : \mathsf{s} \subseteq t \text{ and } t \subseteq \bigcup \mathcal{P}$$

$$\iff t \in \mathcal{P} \text{ (if } \mathcal{P} \in \mathbb{CU} \text{)}$$

Convexity 2000 Expressive completeness

Convex Union-closed Properties

Convex properties

Conclusion 00

Logics for Convex Properties

Team semantics

To get a characteristic formula for all convex properties, we can replace the characteristic formula for flat properties with a characteristic formula for downward-closed properties. Flat (downward- and union-closed) properties:

$$t \models \phi_{\mathcal{P}}^{\mathcal{F}} \iff t \subseteq \bigcup \mathcal{P}$$

Upward-closed properties:

$$t \models \phi_{\mathcal{P}}^{U} \iff \exists s \in \mathcal{P} : s \subseteq t$$

Downward-closed properties:

$$t \models \phi_{\mathcal{P}}^{D} \iff \exists s \in \mathcal{P} : t \subseteq s$$

Convex union-closed properties:

$$t \models \phi_{\mathcal{P}}^{\mathsf{F}} \land \phi_{\mathcal{P}}^{\mathsf{U}} \iff \exists s \in \mathcal{P} : s \subseteq t \text{ and } t \subseteq \bigcup \mathcal{P}$$
$$\iff t \in \mathcal{P} \text{ (if } \mathcal{P} \in \mathbb{CU})$$

Convex properties:

$$t \models \phi_{\mathcal{P}}^{\mathcal{D}} \land \phi_{\mathcal{P}}^{\mathcal{U}} \iff \exists s_1 \in \mathcal{P} : s_1 \subseteq t \text{ and } \exists s_2 \in \mathcal{P} : t \subseteq s_2$$
$$\iff t \in \mathcal{P} \text{ (if } \mathcal{P} \in \mathbb{C})$$

Convexity Team semantics Expressive completeness Convex Union-closed Properties Convex properties Conclusion Convex properties Convex prop

Can we simply extend $\mathbf{PL}_{\vee}(NE)$ to get $\phi_{\mathcal{P}}^{D}$? No. It can be shown that if a logic L can define $||\phi \lor \psi||$ for all convex ϕ, ψ (notation: $\mathbb{C} \lor \mathbb{C} \subseteq ||L||$), then $||L|| \not\subseteq \mathbb{C}$ (the logic cannot be convex!)

For instance, let $\mathcal{P}_1 \coloneqq \{\{v_1\}, \{v_2, v_3\}\}$ and $\mathcal{P}_2 \coloneqq \{\{v_1\}\}$. Then $\mathcal{P}_1, \mathcal{P}_2 \in \mathbb{C}$, so $\mathcal{P}_1 = ||\phi_1||$ and $\mathcal{P}_2 = ||\phi_2||$ for $\phi_1, \phi_2 \in L$. We have $||\phi_1 \lor \phi_2|| = \{\{v_1\}, \{v_1, v_2, v_3\}\} \notin \mathbb{C}$, so if $\mathbb{C} \lor \mathbb{C} \subseteq ||L||$, then $||L|| \not\in \mathbb{C}$.

We had \vee in $\mathbf{PL}_{\vee}(NE)$, but $\mathbf{PL}_{\vee}(NE)$ can only define $\phi \lor \psi$ for all convex *and union-closed* ϕ, ψ ; this does not violate convexity. $\mathbb{CU} \lor \mathbb{CU} \subseteq ||L||$ need not imply $\mathbb{C} \lor \mathbb{C} \subseteq ||L||$.

We must either (1) modify \lor to force convexity, or (2) replace \lor with something else (that still allows us to capture all of classical propositional logic). Recall that propositional dependence logic and propositional inquisitive logic are complete for \mathbb{D} and hence can express $\phi_{\mathcal{P}}^{D}$. We employ strategy (1) to produce a convex extension of propositional dependence logic, and (2) to produce a convex logic similar to propositional inquisitive logic. vexity Team semantics 00 000000 Expressive completeness

Convex Union-closed Properties

Convex properties

Conclusion

Convex Propositional Dependence Logic

Syntax of propositional dependence logic $\textbf{PL}_{\vee}(=(\cdot))$:

$$\phi ::= \boldsymbol{p} \mid \bot \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid = (\boldsymbol{p}_1, \ldots, \boldsymbol{p}_n, \boldsymbol{q})$$

where $\alpha \in \mathbf{PL}_{\vee}$. $\|\mathbf{PL}_{\vee}(=(\cdot))\| = \mathbb{D}$, so $\|\phi_{\mathcal{P}}^{D}\| \in \|\mathcal{PL}_{\vee}(=(\cdot))\|$.

We modify \vee to force downward closure, and hence convexity. We also replace NE with the epistemic might operator \bullet to still be able to express $\phi_{\mathcal{P}}^U$. Syntax of classical propositional logic (with \forall) **PL**_{\forall}:

 $\alpha \coloneqq p \mid \bot \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha$

Syntax of convex propositional dependence logic $PL_{\forall}(=(\cdot), \bullet)$:

$$\phi ::= p \mid \bot \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid = (p_1, \ldots, p_n, q) \mid \bullet \phi$$

where $\alpha \in \mathbf{PL}_{\mathbf{v}}$.

$$\begin{split} t &\models \phi \lor \psi \iff \exists s \supseteq t : s = s_1 \cup s_2 \& s_1 \models \phi \& s_2 \models \psi \\ t &\models \bullet \phi \iff \exists s \subseteq t : s \neq \emptyset \& s \models \phi \end{split}$$

For downward-closed $\phi, \psi : \phi \lor \psi \equiv \phi \lor \psi$, so $\|\phi_{\mathcal{P}}^{D}\| \in \|PL_{\mathbb{V}}(=(\cdot), \bullet)\|$. We can define χ_{t} using \mathbb{V} , and define $\phi_{\mathcal{P}}^{U}$ for $\mathcal{P} = \{t_{1}, \ldots, t_{n}\}$ by: $\phi_{\mathcal{P}}^{U} := \wedge_{v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}} \bullet (\chi_{v_{1}} \lor \ldots \lor \chi_{v_{n}}).$

vexity Team semantics 0 000000

A Convex Logic Similar to Propositional Inquisitive Logic

Syntax of classical propositional logic (with \rightarrow) **PL**_{\rightarrow}:

$$\alpha ::= \boldsymbol{p} \mid \bot \mid \alpha \land \alpha \mid \alpha \to \alpha$$

Syntax of propositional inquisitive logic $PL_{\rightarrow}(\mathbb{V})$:

$$\phi \coloneqq \boldsymbol{p} \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \phi \lor \phi$$

$$\begin{split} t &\models \phi \rightarrow \psi \iff \forall s \subseteq t : s \models \phi \text{ implies } s \models \psi \\ t &\models \phi \lor \psi \iff t \models \phi \text{ or } t \models \psi \end{split}$$

Like \mathbf{PL}_{\vee} , $\mathbf{PL}_{\rightarrow}$ is flat, and corresponds to standard classical propositional logic. We define $\neg_i \phi \coloneqq \phi \rightarrow \bot$. $\phi \lor_i \psi \coloneqq \neg_i (\neg_i \phi \land \neg_i \psi)$. Using these, we can construct χ_t as before. $||\mathbf{PL}_{\rightarrow}(\vee)|| = \mathbb{D}$, and ϕ_P^D is definable as

 $\phi_{\mathcal{P}}^{D} \coloneqq \bigvee_{t \in \mathcal{P}} \chi_{t}$

We again add the epistemic modality \bullet to capture $\phi_{\mathcal{P}}^U$:

$$\phi_{\mathcal{P}}^{U} \coloneqq \bigwedge_{v_1 \in t_1, \dots, v_n \in t_n} \bullet (\chi_{v_1} \lor_i \dots \lor_i \chi_{v_n}) \qquad (\mathcal{P} = \{t_1, \dots, t_n\})$$

Convexity 0000	Team semantics 000000	Expressive completeness	Convex Union-closed Properties	Convex properties	Conclusion 00
-------------------	--------------------------	-------------------------	--------------------------------	-------------------	------------------

Problem: with \bullet and \mathbb{V} , the logic is no longer convex. If $\mathbb{C} \mathbb{V} \mathbb{C} \subseteq ||L||$, then $||L|| \notin \mathbb{C}$. E.g., $\bullet p \mathbb{V} q$ is not convex.

Solution: We can have $\mathbb{F} \vee \mathbb{F} \subseteq ||L||$ (where \mathbb{F} is the class of flat properties) and hence $||\phi_{\mathcal{P}}^{D}|| = ||\bigvee_{t \in \mathcal{P}} \chi_{t}|| \in ||L||$ without having \mathbb{V} in the syntax. In fact, \mathbb{V} is already uniformly definable for flat ϕ, ψ using \rightarrow and \blacklozenge .

Syntax of $PL_{\rightarrow}(\diamond)$:

 $\phi \coloneqq \boldsymbol{p} \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \bullet \phi$

For any $\{\alpha_k \mid k \in K\} \subseteq \mathbf{PL}_{\rightarrow}$,

$$\bigvee_{k \in K} \alpha_k \coloneqq \bigwedge_{k \in K} \left(\left(\bigwedge_{j \in K \setminus \{k\}} \bullet_{\neg_i} \alpha_j \right) \to \alpha_k \right).$$

Then $\bigvee_{k \in K} \bar{\alpha}_k \equiv \bigvee_{k \in K} \bar{\alpha}_k$. We can define $\phi_{\mathcal{P}}^U$ as before, and $\phi_{\mathcal{P}}^D$ as:

$$\phi^D_{\mathcal{P}} \coloneqq \bigvee_{t \in \mathcal{P}} \chi$$

Convexity 0000	Team semantics 000000	Expressive completeness	Convex Union-closed Properties	Convex properties	Conclusion ●0
Conclusi	on				

- Importance of convexity.
- Notion of propositionhood in team logics.
- Results: PL_V(NE) is expressively complete for convex and union-closed properties.
 A modal analogue of the result shows that Aloni's BSML is expressively complete for modal convex and union-closed properties.
- Results: Two logics expressively complete for all convex properties. One is similar to propositional dependence logic, the other to propositional inquisitive logic.

Convexity 0000	Team semantics 000000	Expressive completeness 00	Convex Union-closed Properties 00	Convex properties	Conclusion ○●

Thank you!