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Team semantics

In team semantics, formulas are interpreted with respect sets of valuations—teams—rather than single
valuations.

Teams provide for ways to express meanings not readily expressible in single-valuation
semantics.

single-valuation semantics
v ( ϕ

v ∈ 2Prop

vp vpq

vq v

vp ( p

team semantics
s ( ϕ

s ⊆ 2Prop

vp vpq

vq v

{vp, vpq} ( p

dependence logic example:

p q r

v1 0 1 1

v2 0 1 0

v3 1 0 0

v3 1 0 0

s (=(p,q) s *=(p, r)
the value of p determines the

value of q but does not
determine the value of r
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Syntax

Syntax of classical propositional logic PL

ϕ ∶∶= p ∣ � ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ

where p ∈ Prop (some fixed set of propositional variables).

We consider extensions of PL by various non-classical connectives such as the non-emptiness atom ne
and the global disjunction /// . In these extension, negations are restricted to classical formulas. E.g.,
syntax of PL(ne, /// ):

ϕ ∶∶= p ∣ � ∣ ne ∣ ¬α ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ϕ /// ϕ

where p ∈ Prop, α ∈ PL.



4/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

Semantics

s ( p ⇐⇒ ∀v ∈ s ∶ v(p) = 1

s ( � ⇐⇒ s = ∅

s ( ¬α ⇐⇒ ∀v ∈ s ∶ {v} * α

s ( ϕ ∧ ψ ⇐⇒ s ( ϕ and s ( ψ

s ( ϕ ∨ ψ ⇐⇒ ∃t, t ′ ∶ t ∪ t ′ = s &
t ( ϕ & t ′ ( ψ

s ( ne ⇐⇒ s ≠ ∅

s ( ϕ /// ψ ⇐⇒ s ( ϕ or s ( ψ

vp vpq

vq v

(a) s ( p s ( ¬r

vp vpq

vq v

(b) s * p

vp vpq

vq v

(c) s ( p ∨ q

s ( (p ∧ ne) ∨
(q ∧ ne)

vp vpq

vq v

(d) s ( p ∨ q

s * (p ∧ ne) ∨
(q ∧ ne)

vp vpq

vq v

(e) {vp} ( p /// ¬p
{vq} ( p /// ¬p
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Closure properties

Definition

ϕ is downward closed: [s ( ϕ and t ⊆ s] Ô⇒ t ( ϕ

ϕ is union closed: [s ( ϕ for all s ∈ S ≠ ∅] Ô⇒ ⋃S ( ϕ

ϕ has the empty team property ∶ ∅ ( ϕ

ϕ is flat ∶ s ( ϕ ⇐⇒ {v} ( ϕ for all v ∈ s

flat ⇐⇒ downward closed & union closed & empty team property

PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

for α ∈ PL ∶ s ( α ⇐⇒ ∀v ∈ s ∶ {v} ( α ⇐⇒ ∀v ∈ s ∶ v ( α

Therefore the logics we consider are conservative extensions of classical propositional logic:

for Ξ ∪ {α} ⊆ PL ∶ Ξ ( α (in team semantics) ⇐⇒ Ξ ( α (in standard semantics)



5/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

Closure properties

Definition

ϕ is downward closed: [s ( ϕ and t ⊆ s] Ô⇒ t ( ϕ

ϕ is union closed: [s ( ϕ for all s ∈ S ≠ ∅] Ô⇒ ⋃S ( ϕ

ϕ has the empty team property ∶ ∅ ( ϕ

ϕ is flat ∶ s ( ϕ ⇐⇒ {v} ( ϕ for all v ∈ s

flat ⇐⇒ downward closed & union closed & empty team property

PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

for α ∈ PL ∶ s ( α ⇐⇒ ∀v ∈ s ∶ {v} ( α ⇐⇒ ∀v ∈ s ∶ v ( α

Therefore the logics we consider are conservative extensions of classical propositional logic:

for Ξ ∪ {α} ⊆ PL ∶ Ξ ( α (in team semantics) ⇐⇒ Ξ ( α (in standard semantics)



5/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

Closure properties

Definition

ϕ is downward closed: [s ( ϕ and t ⊆ s] Ô⇒ t ( ϕ

ϕ is union closed: [s ( ϕ for all s ∈ S ≠ ∅] Ô⇒ ⋃S ( ϕ

ϕ has the empty team property ∶ ∅ ( ϕ

ϕ is flat ∶ s ( ϕ ⇐⇒ {v} ( ϕ for all v ∈ s

flat ⇐⇒ downward closed & union closed & empty team property

PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

for α ∈ PL ∶ s ( α ⇐⇒ ∀v ∈ s ∶ {v} ( α ⇐⇒ ∀v ∈ s ∶ v ( α

Therefore the logics we consider are conservative extensions of classical propositional logic:

for Ξ ∪ {α} ⊆ PL ∶ Ξ ( α (in team semantics) ⇐⇒ Ξ ( α (in standard semantics)



5/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

Closure properties

Definition

ϕ is downward closed: [s ( ϕ and t ⊆ s] Ô⇒ t ( ϕ

ϕ is union closed: [s ( ϕ for all s ∈ S ≠ ∅] Ô⇒ ⋃S ( ϕ

ϕ has the empty team property ∶ ∅ ( ϕ

ϕ is flat ∶ s ( ϕ ⇐⇒ {v} ( ϕ for all v ∈ s

flat ⇐⇒ downward closed & union closed & empty team property

PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

for α ∈ PL ∶ s ( α ⇐⇒ ∀v ∈ s ∶ {v} ( α ⇐⇒ ∀v ∈ s ∶ v ( α

Therefore the logics we consider are conservative extensions of classical propositional logic:

for Ξ ∪ {α} ⊆ PL ∶ Ξ ( α (in team semantics) ⇐⇒ Ξ ( α (in standard semantics)



6/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

● Formulas with /// might not be union closed.

● Formulas with ne might not be downward
closed or have the empty team property.

● Team-based logics are commonly not closed
under uniform substitution, e.g., p ( p ∨ p
but (p /// ¬p) ∨ (p /// ¬p) * p /// ¬p

vp vpq

vq v

{vp} ( p /// ¬p
{vq} ( p /// ¬p
{vp, vq} * p /// ¬p

{vp, vq} ( (p ∧ ne) ∨ (¬p ∧ ne)
{vp} * (p ∧ ne) ∨ (¬p ∧ ne)

{vp, vq} ( (p /// ¬p) ∨ (p /// ¬p)
{vp, vq} * p /// ¬p
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Expressive Completeness

Definition

● ϕ(N)—the propositional variables in ϕ are among N ⊆ Prop
● The domain of a team s ⊆ 2N is N—dom(s) = N. If dom(s) = N, we also say s is a team over N.

● A (team) property P (over N) is a class of teams (over N): P ⊆ 22
N

.

● For a formula ϕ(N), the property (over N) defined by ϕ is ∣∣ϕ∣∣N ∶= {s ⊆ 2N ∣ s ( ϕ}.

● For a class of properties P ⊆ 22
2Prop

and N ⊆ Prop, PN ∶= {P ∈ P ∣ P ⊆ 22
N

}.
● A logic (or language) L is expressively complete for a class of properties P iff for each finite

N ⊆ Prop:
∣∣L∣∣N ∶= {∣∣ϕ(N)∣∣N ∣ ϕ ∈ L} = PN

In practice we can usually ignore N and write ∣∣ϕ∣∣, ∣∣L∣∣ = P, etc.
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We are particularly concerned with expressive completeness w.r.t. to classes of properties with specific
closure properties. We say a property P is downward closed if s ∈ P and t ⊆ s implies t ∈ P, etc.

Some uses of such an expressive completeness result:

● Constitutes a concise and tractable characterization of the logic in question

● Allows for easy definability and uniform definability proofs

● Allows one to easily show the logic has other properties (e.g., uniform interpolation)

● The proofs of expressive completeness yield normal form for the logics. One can use these to
prove the completeness of an axiomatization
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Some results in the literature:

downward closed

union closed

PL flat

PL(ne)

PL(⊆) PL(ne,⊘)

PL(/// ),PL(= (⋅))

PL(�) PL(�, /// ) PL(⊆, /// ) PL(ne, /// ),PL(∼)

expressively complete no empty team property

?

= (⋅): extended dependence atoms: s (=(α1, . . . ,αn, β) ∶⇐⇒
∀w,w ′ ∈ s ∶ (w ( αi ⇐⇒ w ′ ( αi for all i ∈ {1, . . . , n}) implies w ( β ⇐⇒ w ′ ( β

⊆: extended inclusion atoms: s ( α1, . . .αn ⊆ β1, . . . , βn ∶⇐⇒
∀w ∈ s ∶ ∃v ∈ s ∶ w ( αi ⇐⇒ v ( βi for all i ∈ {1, . . . , n}
�: extended independence atoms: s ( α1, . . .αn�γ1,...,γmβ1, . . . , βl ∶⇐⇒
∀w,w ′ ∈ s ∶ (w ( γi ⇐⇒ w ′ ( γi ) implies ∃v ∈ s ∶ (w ( αi ⇐⇒ v ( αi ) and (w ′ ( βi ⇐⇒ v ( βi ) and (w ( γi ⇐⇒ v ( γi )
⊘: emptiness operator: s ( ⊘ϕ ∶⇐⇒ s ( ϕ or s = ∅
∼: Boolean negation: s (∼ ϕ ∶⇐⇒ s * ϕ
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Normal Forms

To show, e.g., that PL is expressively complete for the class F of flat properties—i.e., that
∣∣PL∣∣ = F—one constructs characteristic formulas for flat properties in PL.
Characteristic formulas for valuations:

χN
v ∶= ⋀{p ∣ p ∈ N, v ( p} ∧⋀{¬p ∣ p ∈ N, v * p}

w ( χN
v ⇐⇒ w ↾ N = v ↾ N

if dom(v) = dom(w) = N ∶ w ( χN
v ⇐⇒ w = v

Characteristic formulas for teams:

χN
s ∶= ⋁v∈s χ

N
v

t ( χN
s ⇐⇒ t ↾ N ⊆ s ↾ N where t ↾ N = {w ↾ N ∣ w ∈ t}
if dom(t) = dom(s) = N ∶ t ( χN

s ⇐⇒ t ⊆ s

Characteristic formulas for flat properties: For P ∈ FN and t with domain N:

t ( ⋁
s∈P

χN
s ⇐⇒ t ∈ P, i .e., P = ∣∣⋁

s∈P
χN
s ∣∣N

∣∣PL∣∣N ⊆ FN since PL-formulas are flat. FN ⊆ ∣∣PL∣∣N since if P ∈ FN , P = ∣∣⋁s∈P χs ∣∣N ∈ ∣∣PL∣∣N .
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Normal forms

Logic Normal Form Type of property characterized

PL ⋁s∈P χs Flat
PL( /// ) ///s∈Pχs Downward closed, empty team property
PL(= (⋅)) ⋀s∈22N /PN

(γs ∨ χ2N /s) Downward closed, empty team property

PL(⊆) ⋁s∈P(χs ∧⋀v∈s ⊺ ⊆ χv) Union closed, empty team property
PL(⊆, /// ) ///s∈P(χs ∧⋀v∈s ⊺ ⊆ χv) Empty team property
PL(ne,⊘) ⋁s∈P ⊘⋁v∈s(χv ∧ ne) Union closed
PL(ne, /// ) ///s∈P ⋁v∈s(χv ∧ ne) All properties

(For the PL(= (⋅))-normal form, define γs
0 ∶= �; γs

1 ∶= ⋀{= (p) ∣ p ∈ dom(s)} γn ∶= ⋁n
1 γ1 for n ≥ 2.)
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To show expressive completeness of PL(ne), we consider the following closure property:

Definition

ϕ is convex if (s ( ϕ, t ( ϕ and s ⊆ u ⊆ t) implies u ( ϕ.

Observe that:

● ϕ is downward closed ⇐⇒ ϕ is convex and if there is some t s.t. t ( ϕ, then ∅ ( ϕ

(similarly P is downward closed ⇐⇒ P is convex and if P ≠ ∅, then ∅ ∈ P).
● Let ϕ be upward closed if (s ( ϕ and t ⊇ s) implies t ( ϕ.

Then ϕ(N) is upward closed ⇐⇒ ϕ is convex and if there is some t with dom(t) = N s.t. t ( ϕ,
then 2N ( ϕ.

(similarly P over N is upward closed ⇐⇒ P is convex and if P ≠ ∅, then 2N ∈ P)

An example: q /// ((p ∧ ne) ∨ (¬p ∧ ne)) is not convex:
● {wpq} ( q so {wpq} ( q /// ((p ∧ ne) ∨ (¬p ∧ ne))
● {wpq,wpq,wpq} ( (p ∧ ne) ∨ (¬p ∧ ne) so {wpq,wpq,wpq} ( q /// ((p ∧ ne) ∨ (¬p ∧ ne))
● But {wpq,wpq} * q /// ((p ∧ ne) ∨ (¬p ∧ ne))
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Let CU be the class of convex, union-closed properties.

Theorem (Knudstorp)

∣∣PL(ne)∣∣ = CU

Proof.

⊆: By induction on ϕ. The only nontrivial case is showing ψ ∨ χ is convex when ψ,χ are union closed
convex.
Let s ( ψ ∨ χ, t ( ψ ∨ χ, and s ⊆ u ⊆ t, where ψ,χ are union closed and convex. Then s = sψ ∪ sχ and
t = tψ ∪ tχ where tψ ( ψ, etc. By union closure, ⋃ ∣∣ψ∣∣ ( ψ and ⋃ ∣∣χ∣∣ ( χ. We have
sψ ⊆ u ∩⋃ ∣∣ψ∣∣ ⊆ ⋃ ∣∣ψ∣∣ and sχ ⊆ u ∩⋃ ∣∣χ∣∣ ⊆ ⋃ ∣∣χ∣∣ so u ∩⋃ ∣∣ψ∣∣ ( ψ and u ∩⋃ ∣∣χ∣∣ ( χ by convexity.
u ⊆ tψ ∪ tχ ⊆ ⋃ ∣∣ψ∣∣ ∪⋃ ∣∣χ∣∣ so u ⊆ (u ∩⋃ ∣∣ψ∣∣) ∪ (u ∩⋃ ∣∣χ∣∣), whence u = (u ∩⋃ ∣∣ψ∣∣) ∪ (u ∩⋃ ∣∣χ∣∣).
Therefore u ( ψ ∨ χ.
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Proof.

⊇: Let PN ∈ CUN . If P = ∅, then it is ∣∣� ∧ ne∣∣ ∈ ∣∣PL(ne)∣∣. Otherwise let P = {t1, . . . , tn} (P ⊆ 22
N

where N is finite, so P is finite). We show:

P = ∣∣⋁{(χv1 ∨ . . . ∨ χvn) ∧ ne ∣ (v1 × . . . × vn) ∈ (t1 × . . . × tn)}∣∣ = ∣∣ ⋁
s∈∏P

(χs ∧ ne)∣∣

where∏P = {{v1, . . . , vn} ∣ (v1 . . . , vn) ∈∏P}

⊆: Let ti ∈ P. Then ti = ⋃v∈ti {v}. For each v ∈ ti , there is some {s jv ∣ j ∈ Jv} ⊆∏P such that v ∈ s jv
and hence also {v} ⊆ s jv for all j ∈ Jv . Then {v} ( χ

s jv
∧ ne for all j ∈ Jv and so

ti ( ⋁v∈ti ⋁j∈Jv (χs jv
∧ ne). For each s ∈∏P there is some vi ∈ s such that vi ∈ ti whence s = s jvi for

some j ∈ Jvi . Therefore {s jv ∣ v ∈ ti , j ∈ Jv} =∏P, and so ti ( ⋁s∈∏P(χs ∧ ne).
⊇: Let t ( ⋁s∈∏P(χs ∧ ne) so that t = ⋃s∈∏P ts where ts ( χs ∧ ne.
We show t ⊆ ⋃P; assume for contradiction that t /⊆ ⋃P. Then there is a v ∈ t such that v ∉ ti for all
ti ∈ P. Then for any s ∈∏P, v ∉ s. By t = ⋃s∈∏P ts we must have v ∈ ts for some s ∈∏P, where
ts ( χs ∧ ne. But then v ∈ ts ⊆ s and v ∉ s, a contradiction.
We now show ti ⊆ t for some ti ∈ P; assume for contradiction that ti /⊆ t for all ti ∈ P. Then for each
ti ∈ P there is a vi ∈ ti such that vi ∉ t. We have u ∶= {vi ∣ ti ∈ P} ∈∏P so ts ( χu ∧ne for some ts ⊆ t.
Then ts ⊆ u and ts ≠ ∅ so there is some vi ∈ ts ∩ u. But then vi ∈ ts ⊆ t and vi ∉ t, a contradiction.
We now have ti ⊆ t ⊆ ⋃P. ⋃P ∈ P by union closure, and therefore t ∈ P by convexity.
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and hence also {v} ⊆ s jv for all j ∈ Jv . Then {v} ( χ

s jv
∧ ne for all j ∈ Jv and so
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∧ ne). For each s ∈∏P there is some vi ∈ s such that vi ∈ ti whence s = s jvi for
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Updated picture:

downward closed

union closed

convex

PL flat

PL(ne)

PL(ne)

PL(⊆) PL(ne,⊘)

PL(/// ),PL(= (⋅))

PL(�) PL(�, /// ) PL(⊆, /// ) PL(ne, /// )

expressively complete no empty team property

?

?

What logic is expressively complete for convex properties? Note that

ϕ is convex and has the empty team property ⇐⇒
ϕ is downward closed and has the empty team property

So PL( /// ) and PL(= (⋅)) are expressively complete for convex properties with the empty team
property.
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Recall our characteristic formulas for convex union-closed properties:

If P ≠ ∅: P = ∣∣ ⋁
s∈∏P

(χs ∧ ne)∣∣

If P = ∅: P = ∣∣ á ∣∣

(where á∶= � ∧ ne.) Equivalently we may use:

If P ≠ ∅: P = ∣∣⋁
t∈P

χt ∧ ⋀
s∈∏P

((χs ∧ ne) ∨ ⊺)∣∣

If P = ∅: P = ∣∣ á ∣∣

where ⊺ ∶= ¬�. Here ⋁t∈P χt is a characteristic formula for flat properties, and ⋀s∈∏P((χs ∧ ne) ∨ ⊺)
is a characteristic formula for upward-closed properties.

To get a characteristic formula for (non-empty) convex properties, simply replace the first conjunct
with a characteristic formula for downward-closed properties:

P = ∣∣ ///
t∈P

χt ∧ ⋀
s∈∏P

((χs ∧ ne) ∨ ⊺)∣∣
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Proposition

For any nonempty convex P = {t1, . . . , tn} over N:

P = ∣∣ ///
t∈P

χN
t ∧ ⋀

s∈∏P
((χN

s ∧ ne) ∨ ⊺)∣∣N

Proof.

⊆: Let ti ∈ P. Then ti ( χti so ti ( ///t∈Pχt . If P has the empty team property, ∏P = ∅ so the
second conjunct is ⊺ (we stipulate ⋀∅ ∶= ⊺) and we are done. Otherwise let s ∈∏P. We have
s = {v1, . . . , vn} for some v1 ∈ t1, . . . , vn ∈ tn so there is a vi ∈ s such that vi ∈ ti . Clearly
ti ( (χvi ∧ ne) ∨ ⊺. Therefore also ti ( ((χvi ∨⋁w∈s/{vi} χw) ∧ ne) ∨ ⊺ whence ti ( (χs ∧ ne) ∨ ⊺.

⊇: Let u ( ///
t∈P χt ∧⋀s∈∏P((χs ∧ ne) ∨ ⊺). By u ( ///

t∈P χt there is some t ∈ P s.t. u ( χt

whence u ⊆ t.
We show there is some ti ∈ P s.t. ti ⊆ u; assume for contradiction that ti /⊆ u for all ti ∈ P. Then for
each ti ∈ P there is a vi ∈ ti such that vi ∉ u. We have y ∶= {vi ∣ ti ∈ P} ∈∏P so by
u ( ⋀s∈∏P((χs ∧ ne) ∨ ⊺), we have u ( (χy ∧ ne) ∨ ⊺. But then there is a nonempty u′ ⊆ u with
u′ ( χy whence u′ ⊆ y . So there is some vi ∈ u′ ∩ y . But then vi ∈ u′ ⊆ u and vi ∉ u, a contradiction.
We now have ti ⊆ u ⊆ t, so by convexity u ∈ P.
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So we can capture all convex properties in PL(ne, /// ), but this is clearly not convex; e.g.,
((p ∧ ne) ∨ (¬p ∧ ne)) /// q is not convex.

This is not surprising given PL(ne, /// ) is complete for all properties, but there is a more general issue
with ∨: if ϕ or ψ is not union closed, ϕ ∨ ψ might not be convex.

Let C be the class of convex properties.

Fact

If C ⊆ ∣∣L∣∣ and ∨ is uniformly definable in L, then ∣∣L∣∣ /⊆ C.

where ∨ is uniformly definable in L if there is a formula θ∨(p,q) ∈ L such that ψ ∨ χ ” θ∨(ψ/p, χ/q)
for all ψ,χ ∈ L. Note that due to failure of uniform substitution in team-based logics, it is possible that
{∣∣ψ ∨ χ∣∣ ∣ ψ,χ ∈ L} ⊆ ∣∣L∣∣ without ∨ being uniformly definable in L.
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Fact

If C ⊆ ∣∣L∣∣ and ∨ is uniformly definable in L, then ∣∣L∣∣ /⊆ C.

To prove this fact, we recall the intuitionistic implication →:

s ( ϕ→ ψ ⇐⇒ ∀t ⊆ s ∶ t ( ϕ implies t ( ψ

Consider ψ ∶= (((p ∧ ne) ∨ (¬p ∧ ne))→ q) ∧ ((r ∧ ne) ∨ ⊺). It is easy to see that ∣∣ψ∣∣ is convex (the
first conjunct is downward closed; the second, upward closed). Note also that ∣∣ψ∣∣ is not union closed.
Let θv define ∨ in L and let ϕ ∶= θv(ψ,ψ). We show ∣∣ϕ∣∣ is not convex. Consider the following team t:

p q r

v1 1 0 1
v2 1 0 0
v3 0 0 1
v4 0 0 0

We have ∀t ⊆ {v1, v2} ∶ t * (p ∧ ne) ∨ (¬p ∧ ne) so {v1, v2} ( ((p ∧ ne) ∨ (¬p ∧
ne)) → q. Also {v1, v2} ( (r ∧ ne) ∨ ⊺ so {v1, v2} ( ψ. Similarly {v3, v4} ( ψ.
Therefore t ( ψ ∨ ψ so t ( ϕ. Clearly also {v3} ( ψ so {v3} ( ϕ. Now assume
for contradiction that {v2, v3} ( ϕ. Then {v2, v3} = t1 ∪ t2 where t1 ( ψ and
t2 ( ψ. We cannot have ti = {v2} because clearly {v2} * ψ. So one of the
subteams ti must be {v2, v3}. But {v2, v3} * ((p ∧ ne) ∨ (¬p ∧ ne))→ q. Since
{v3} ⊆ {v2, v3} ⊆ t, ϕ is not convex.
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To obtain a logic expressively complete for L, we must therefore change the classical base of the logic.

Syntax of classical propositional logic with → PL→:

α ∶∶= p ∣ � ∣ α ∧ α ∣ α→ α

where p ∈ Prop and s ( � ⇐⇒ s = ∅. As with PL, it can be shown PL→ is flat and its semantics
correspond to standard semantics on singletons.

Syntax of PL→(∇):
ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ∇ϕ

∇ is an ”epistemic might” operator which has been used to formalize epistemic contradictions:

s ( ∇ϕ ⇐⇒ ∃t ⊆ s ∶ t ≠ ∅ and t ( ϕ
Epistemic contradiction: #It is raining but it might not be raining.

Formalized as: r ∧∇¬r . Contradiction: r ∧∇¬r (á.

Note that ∇ϕ ” (ϕ ∧ ne) ∨ ⊺ and that ne ” ∇⊺.



20/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

To obtain a logic expressively complete for L, we must therefore change the classical base of the logic.

Syntax of classical propositional logic with → PL→:

α ∶∶= p ∣ � ∣ α ∧ α ∣ α→ α

where p ∈ Prop and s ( � ⇐⇒ s = ∅. As with PL, it can be shown PL→ is flat and its semantics
correspond to standard semantics on singletons.

Syntax of PL→(∇):
ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ∇ϕ

∇ is an ”epistemic might” operator which has been used to formalize epistemic contradictions:

s ( ∇ϕ ⇐⇒ ∃t ⊆ s ∶ t ≠ ∅ and t ( ϕ
Epistemic contradiction: #It is raining but it might not be raining.

Formalized as: r ∧∇¬r . Contradiction: r ∧∇¬r (á.

Note that ∇ϕ ” (ϕ ∧ ne) ∨ ⊺ and that ne ” ∇⊺.



20/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

To obtain a logic expressively complete for L, we must therefore change the classical base of the logic.

Syntax of classical propositional logic with → PL→:

α ∶∶= p ∣ � ∣ α ∧ α ∣ α→ α

where p ∈ Prop and s ( � ⇐⇒ s = ∅. As with PL, it can be shown PL→ is flat and its semantics
correspond to standard semantics on singletons.

Syntax of PL→(∇):
ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ∇ϕ

∇ is an ”epistemic might” operator which has been used to formalize epistemic contradictions:

s ( ∇ϕ ⇐⇒ ∃t ⊆ s ∶ t ≠ ∅ and t ( ϕ
Epistemic contradiction: #It is raining but it might not be raining.

Formalized as: r ∧∇¬r . Contradiction: r ∧∇¬r (á.

Note that ∇ϕ ” (ϕ ∧ ne) ∨ ⊺ and that ne ” ∇⊺.



20/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

To obtain a logic expressively complete for L, we must therefore change the classical base of the logic.

Syntax of classical propositional logic with → PL→:

α ∶∶= p ∣ � ∣ α ∧ α ∣ α→ α

where p ∈ Prop and s ( � ⇐⇒ s = ∅. As with PL, it can be shown PL→ is flat and its semantics
correspond to standard semantics on singletons.

Syntax of PL→(∇):
ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ∇ϕ

∇ is an ”epistemic might” operator which has been used to formalize epistemic contradictions:

s ( ∇ϕ ⇐⇒ ∃t ⊆ s ∶ t ≠ ∅ and t ( ϕ
Epistemic contradiction: #It is raining but it might not be raining.

Formalized as: r ∧∇¬r . Contradiction: r ∧∇¬r (á.

Note that ∇ϕ ” (ϕ ∧ ne) ∨ ⊺ and that ne ” ∇⊺.



20/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

To obtain a logic expressively complete for L, we must therefore change the classical base of the logic.

Syntax of classical propositional logic with → PL→:

α ∶∶= p ∣ � ∣ α ∧ α ∣ α→ α

where p ∈ Prop and s ( � ⇐⇒ s = ∅. As with PL, it can be shown PL→ is flat and its semantics
correspond to standard semantics on singletons.

Syntax of PL→(∇):
ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ∇ϕ

∇ is an ”epistemic might” operator which has been used to formalize epistemic contradictions:

s ( ∇ϕ ⇐⇒ ∃t ⊆ s ∶ t ≠ ∅ and t ( ϕ
Epistemic contradiction: #It is raining but it might not be raining.

Formalized as: r ∧∇¬r . Contradiction: r ∧∇¬r (á.

Note that ∇ϕ ” (ϕ ∧ ne) ∨ ⊺ and that ne ” ∇⊺.



20/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

To obtain a logic expressively complete for L, we must therefore change the classical base of the logic.

Syntax of classical propositional logic with → PL→:

α ∶∶= p ∣ � ∣ α ∧ α ∣ α→ α

where p ∈ Prop and s ( � ⇐⇒ s = ∅. As with PL, it can be shown PL→ is flat and its semantics
correspond to standard semantics on singletons.

Syntax of PL→(∇):
ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ∇ϕ

∇ is an ”epistemic might” operator which has been used to formalize epistemic contradictions:

s ( ∇ϕ ⇐⇒ ∃t ⊆ s ∶ t ≠ ∅ and t ( ϕ
Epistemic contradiction: #It is raining but it might not be raining.

Formalized as: r ∧∇¬r . Contradiction: r ∧∇¬r (á.

Note that ∇ϕ ” (ϕ ∧ ne) ∨ ⊺ and that ne ” ∇⊺.



21/25

Team semantics Expressive completeness Convex union-closed properties Convex properties

Proposition

∣∣PL→(∇)∣∣ ⊆ C (i.e., PL→(∇) is convex).

Proof.

p,� are flat and and hence convex. ϕ→ ψ is downward closed and hence convex. ∇ϕ is upward closed
and hence convex. The conjunction case follows immediately from the induction hypothesis.

To show C ⊆ ∣∣PL→(∇)∣∣, it suffices by what we have shown above to show that

● ∣∣ á ∣∣ ∈ ∣∣PL→(∇)∣∣
● for all non-empty P ∈ C, ∣∣ ///

t∈P χt ∧⋀s∈∏P((χs ∧ ne) ∨ ⊺)∣∣ ∈ ∣∣PL→(∇)∣∣
We have ∣∣ á ∣∣ = ∣∣∇�∣∣ ∈ ∣∣PL→(∇)∣∣. We also have

⋀
s∈∏P

((χs ∧ ne) ∨ ⊺) ” ⋀
s∈∏P

∇χs

(On the right we define χs ∶= ¬⋀v∈s ¬χv where ¬ϕ ∶= ϕ→ � instead of χs = ⋁v∈s χv .)
It therefore suffices to show ∣∣ /// i∈Iαi ∣∣ ∈ ∣∣PL→(∇)∣∣ for αi ∈ PL→.
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j∈I/{i}
∇¬αj)→ αi) E.g., α /// β = (∇¬α→ β) ∧ (∇¬β → α)

Lemma

t ( /// i∈Iαi ⇐⇒ ∃i ∈ I ∶ t ( αi .

Proof.

Ô⇒ : Assume for contradiction that for each i ∈ I , t * αi . By flatness, for each i ∈ I there is some
vi ∈ t with vi ( ¬αi . Then for each i ∈ I , t ( ∇¬αi . By t ( (⋀j∈I/{i}∇¬αi)→ αi , we have t ( αi for
all i ∈ I , a contradiction. So for some i ∈ I we must have have t ( αi .
⇐Ô: Let t ( αi . Let s ⊆ t be such that s ( ⋀j∈I/{i}∇¬αj . By downward closure also s ( αi . So
t ( (⋀j∈I/{i}∇¬αj)→ αi . Now fix k ≠ i ; k ∈ I . There can be no s ⊆ t such that s ( ⋀j∈I/{k}∇¬αj

because s ( αi . Therefore t ( (⋀j∈I/{k}∇¬αj)→ αk .

Theorem

∣∣PL→(∇)∣∣ = C
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Updated picture:

downward closed

union closed

convex

PL flat

PL(ne)

PL(⊆) PL(ne,⊘)

PL(/// ),PL(= (⋅))

PL(�) PL(�, /// ) PL(⊆, /// ) PL(ne, /// )

expressively complete no empty team property

PL→(∇)

?
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Normal forms

Logic Normal Form Type of property characterized

PL ⋁s∈P χs Flat
PL( /// ) ///s∈Pχs Downward closed, empty team property
PL(= (⋅)) ⋀s∈22N /PN

(γs ∨ χ2N /s) Downward closed, empty team property

PL(⊆) ⋁s∈P(χs ∧⋀v∈s ⊺ ⊆ χv) Union closed, empty team property
PL(⊆, /// ) ///s∈P(χs ∧⋀v∈s ⊺ ⊆ χv) Empty team property
PL(ne,⊘) ⋁s∈P ⊘⋁v∈s(χv ∧ ne) Union closed
PL(ne, /// ) ///s∈P ⋁v∈s(χv ∧ ne) All properties
PL(ne) ⋁s∈∏P(χs ∧ ne) Convex, union closed

PL(ne) ⋁t∈P χt ∧⋀s∈∏P((χs ∧ ne) ∨ ⊺) Convex, union closed

⋀s∈∏P((χs ∧ ne) ∨ ⊺) Upward closed

PL→(∇) ///t∈Pχt ∧⋀s∈∏P((χs ∧ ne) ∨ ⊺) Convex

(For the PL(= (⋅))-normal form, define γs
0 ∶= �; γs

1 ∶= ⋀{= (p) ∣ p ∈ dom(s)} γn ∶= ⋁n
1 γ1 for n ≥ 2.)

(In PL→(∇), /// i∈I αi ∶= ⋀i∈I ((⋀j∈I/{i}∇¬αj)→ αi).)
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Relationship with inquisitive logic: InqB, propositional inquisitive logic, has the syntax:

ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ϕ /// ϕ

InqB is expressively complete for downward-closed properties with the empty state property, so
∣∣InqB ∣∣ ⊂ ∣∣PL→(∇)∣∣. /// is not uniformly definable in general in PL→(∇) since PL→(∇, /// ) is not
convex.

Similar logics which are either not convex or cannot express all convex properties:

PL→(/// ,∇) (propositional inquisitive logic with ∇) is not convex. Example: (p ∧∇q) /// (a ∧∇b).
PL→(ne) is not complete for convex properties because it is ”downward closed modulo the
empty team”: s ( ϕ and t ⊆ s where t ≠ ∅ imply t ( ϕ. Similarly for PL→(ne, /// ).
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