Convexity in propositional team semantics

Aleksi Anttila ${ }^{1}$, Søren Brinck Knudstorp ${ }^{2}$
${ }^{1}$ University of Helsinki ${ }^{2}$ University of Amsterdam
Helsinki Logic Seminar

Team semantics

In team semantics, formulas are interpreted with respect sets of valuations-teams-rather than single valuations.
single-valuation semantics

$$
\begin{gathered}
v \models \phi \\
v \in 2^{\text {Prop }}
\end{gathered}
$$

$v_{p} \models p$
team semantics
$s \models \phi$
$s \subseteq 2^{\text {Prop }}$

$\left\{v_{p}, v_{p q}\right\} \models p$

Team semantics

In team semantics, formulas are interpreted with respect sets of valuations-teams-rather than single valuations. Teams provide for ways to express meanings not readily expressible in single-valuation semantics.
single-valuation semantics

$$
\begin{gathered}
v \models \phi \\
v \in 2^{\text {Prop }}
\end{gathered}
$$

$$
v_{p} \models p
$$

team semantics
$s \models \phi$
$s \subseteq 2^{\text {Prop }}$

$\left\{v_{p}, v_{p q}\right\} \models p$
dependence logic example:

	p	q	r
v_{1}	0	1	1
v_{2}	0	1	0
v_{3}	1	0	0
v_{3}	1	0	0

$$
s \models=(p, q) s \not \models=(p, r)
$$

the value of p determines the value of q but does not determine the value of r

Syntax

Syntax of classical propositional logic PL

$$
\phi::=p|\perp| \neg \phi|\phi \wedge \phi| \phi \vee \phi
$$

where $p \in \operatorname{Prop}$ (some fixed set of propositional variables).

We consider extensions of PL by various non-classical connectives such as the non-emptiness atom NE and the global disjunction \mathbb{V}. In these extension, negations are restricted to classical formulas. E.g., syntax of PL(NE, v):

$$
\phi::=p|\perp| \mathrm{NE}|\neg \alpha| \phi \wedge \phi|\phi \vee \phi| \phi \vee \phi
$$

where $p \in \operatorname{Prop}, \alpha \in \mathbf{P L}$.

Semantics

$$
\begin{aligned}
& s \vDash p \quad \Longleftrightarrow \quad \forall v \in s: v(p)=1 \\
& s \models \perp \quad \Longleftrightarrow \quad s=\varnothing \\
& s \models \neg \alpha \quad \Longleftrightarrow \quad \forall v \in s:\{v\} \not \vDash \alpha \\
& s \models \phi \wedge \psi \quad \Longleftrightarrow \quad s \models \phi \text { and } s \models \psi \\
& s \models \phi \vee \psi \quad \Longleftrightarrow \quad \exists t, t^{\prime}: t \cup t^{\prime}=s \& \\
& t \models \phi \& t^{\prime} \models \psi \\
& s \models \mathrm{NE} \quad \Longleftrightarrow \quad s \neq \varnothing \\
& s \models \phi \mathbb{\psi} \quad \Longleftrightarrow \quad s \models \phi \text { or } s \models \psi
\end{aligned}
$$

(a) $s \models p s \models \neg r$

(b) $s \not \vDash p$

Semantics

$$
\begin{aligned}
& s \models p \quad \Longleftrightarrow \quad \forall v \in s: v(p)=1 \\
& s \models \perp \quad \Longleftrightarrow \quad s=\varnothing \\
& s \models \neg \alpha \quad \Longleftrightarrow \quad \forall v \in s:\{v\} \not \vDash \alpha \\
& s \models \phi \wedge \psi \quad \Longleftrightarrow \quad s \models \phi \text { and } s \models \psi \\
& s \models \phi \vee \psi \quad \Longleftrightarrow \quad \exists t, t^{\prime}: t \cup t^{\prime}=s \& \\
& t \models \phi \& t^{\prime} \models \psi \\
& s \models \mathrm{NE} \quad \Longleftrightarrow \quad s \neq \varnothing \\
& s \models \phi \mathbb{\psi} \quad \Longleftrightarrow \quad s \models \phi \text { or } s \models \psi
\end{aligned}
$$

Semantics

$$
\begin{aligned}
& s \models p \quad \Longleftrightarrow \quad \forall v \in s: v(p)=1 \\
& s \models \perp \quad \Longleftrightarrow \quad s=\varnothing \\
& s \models \neg \alpha \quad \Longleftrightarrow \quad \forall v \in s:\{v\} \not \vDash \alpha \\
& s \models \phi \wedge \psi \quad \Longleftrightarrow \quad s \models \phi \text { and } s \models \psi \\
& s \models \phi \vee \psi \quad \Longleftrightarrow \quad \exists t, t^{\prime}: t \cup t^{\prime}=s \& \\
& t \models \phi \& t^{\prime} \models \psi \\
& s \models \mathrm{NE} \quad \Longleftrightarrow \quad s \neq \varnothing \\
& s \models \phi \vee \psi \quad \Longleftrightarrow \quad s \models \phi \text { or } s \models \psi
\end{aligned}
$$

(a) $s \models p s \models \neg r$
(b) $s \not \vDash p$

Semantics

$$
\left.\begin{array}{lll}
s \models p & \Longleftrightarrow & \forall v \in s: v(p)=1 \\
s \models \perp & \Longleftrightarrow s=\varnothing \\
s \models \neg \alpha & \Longleftrightarrow & \forall v \in s:\{v\} \not \models \alpha \\
s \models \phi \wedge \psi & \Longleftrightarrow & \\
s \models \phi \text { and } s \models \psi \\
s \models \phi \vee \psi & \Longleftrightarrow & \exists t, t^{\prime}: t \cup t^{\prime}=s \& \\
t \models \phi \& t^{\prime} \models \psi
\end{array}\right] \begin{gathered}
\\
s \models \varnothing \\
s \models \mathrm{NE} \\
s \models \phi \mathbb{V} \psi
\end{gathered}
$$

(a) $s \models p s \models \neg r$

(b) $s \not \vDash p$

Semantics

Semantics

Semantics

Semantics

Closure properties

Definition

ϕ is downward closed:
ϕ is union closed:
ϕ has the empty team property:
ϕ is flat:

$$
\begin{aligned}
& {[s \models \phi \text { and } t \subseteq s] \Longrightarrow t \models \phi} \\
& {[s \models \phi \text { for all } s \in S \neq \varnothing] \Longrightarrow \bigcup S \models \phi} \\
& \varnothing \models \phi \\
& s \models \phi \Longleftrightarrow\{v\} \models \phi \text { for all } v \in s
\end{aligned}
$$

flat \Longleftrightarrow downward closed \& union closed \& empty team property

PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

Therefore the logics we consider are conservative extensions of classical propositional logic:
for $\equiv \cup\{\alpha\} \subseteq \mathbf{P L}: \quad \equiv,=\alpha$ (in team semantics $) \Longleftrightarrow$ 三' $\quad \alpha$ (in standard semantics)

Closure properties

Definition

ϕ is downward closed:
ϕ is union closed:
ϕ has the empty team property:
ϕ is flat:

$$
[s \models \phi \text { and } t \subseteq s] \Longrightarrow t \vDash \phi
$$

$$
[s \models \phi \text { for all } s \in S \neq \varnothing] \Longrightarrow \bigcup S \models \phi
$$

$$
\varnothing \models \phi
$$

$$
s \models \phi \Longleftrightarrow\{v\} \models \phi \text { for all } v \in s
$$

flat \Longleftrightarrow downward closed \& union closed \& empty team property

PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

Therefore the logics we consider are conservative extensions of classical propositional logic:
for $\equiv \cup\{\alpha\} \subseteq \mathbf{P L}: \quad \equiv \vDash($ in team semantics $) \Longleftrightarrow \equiv \vDash \alpha$ (in standard semantics)

Closure properties

Definition

ϕ is downward closed:

$$
\phi \text { is union closed: }
$$

$$
\phi \text { has the empty team property: }
$$

$$
\phi \text { is flat: }
$$

$$
\begin{aligned}
& {[s \models \phi \text { and } t \subseteq s] \Longrightarrow t \models \phi} \\
& {[s \models \phi \text { for all } s \in S \neq \varnothing] \Longrightarrow \bigcup S \models \phi} \\
& \varnothing \models \phi \\
& s \models \phi \Longleftrightarrow\{v\} \models \phi \text { for all } v \in s
\end{aligned}
$$

flat \Longleftrightarrow downward closed \& union closed \& empty team property
PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

$$
\text { for } \alpha \in \text { PL: } \quad s \models \alpha \Longleftrightarrow \forall v \in s:\{v\} \models \alpha \Longleftrightarrow \forall v \in s: v \models \alpha
$$

Therefore the logics we consider are conservative extensions of classical propositional logic:
for $\equiv \cup\{\alpha\} \subseteq \mathbf{P L}: \quad \equiv \models \alpha$ (in team semantics) $\Longleftrightarrow \equiv \models \alpha$ (in standard semantics)

Closure properties

Definition

ϕ is downward closed:

$$
\phi \text { is union closed: }
$$

$$
\phi \text { has the empty team property: }
$$

$$
\phi \text { is flat: }
$$

$$
\begin{aligned}
& {[s \models \phi \text { and } t \subseteq s] \Longrightarrow t \models \phi} \\
& {[s \models \phi \text { for all } s \in S \neq \varnothing] \Longrightarrow \bigcup S \models \phi} \\
& \varnothing \models \phi \\
& s \models \phi \Longleftrightarrow\{v\} \models \phi \text { for all } v \in s
\end{aligned}
$$

flat \Longleftrightarrow downward closed \& union closed \& empty team property
PL-formulas are flat and their team semantics coincide with their standard semantics on singletons:

$$
\text { for } \alpha \in \text { PL: } \quad s \models \alpha \Longleftrightarrow \forall v \in s:\{v\} \models \alpha \Longleftrightarrow \forall v \in s: v \models \alpha
$$

Therefore the logics we consider are conservative extensions of classical propositional logic:

$$
\text { for } \equiv \cup\{\alpha\} \subseteq \mathbf{P L}: \quad \equiv \models \alpha \text { (in team semantics) } \Longleftrightarrow \equiv \models \alpha \text { (in standard semantics) }
$$

- Formulas with \mathbb{v} might not be union closed.
- Formulas with NE might not be downward closed or have the empty team property.
- Team-based logics are commonly not closed under uniform substitution, e.g., $p \models p \vee p$ but $(p \vee \neg p) \vee(p \vee \neg p) \not \vDash p \vee \neg p$

$\left\{v_{p}, v_{q}\right\}$
$\left\{v_{p}, v_{q}\right\}$
- Formulas with \mathbb{v} might not be union closed.
- Formulas with NE might not be downward closed or have the empty team property.
- Team-based logics are commonly not closed under uniform substitution, e.g., $p \models p \vee p$ but $(p \vee \neg p) \vee(p \vee \neg p) \not \vDash p \vee \neg p$

$$
\begin{array}{lll}
\left\{v_{p}\right\} & \models & p \mathbb{\vee} \neg p \\
\left\{v_{q}\right\} & \models & p \vee \neg p \\
\left\{v_{p}, v_{q}\right\} & \not \models & p \mathbb{\vee}) \\
\left\{v_{p}, v_{q}\right\} & \models & (p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}) \\
\left\{v_{p}\right\} & \not \models & (p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})
\end{array}
$$

- Formulas with \mathbb{v} might not be union closed.
- Formulas with NE might not be downward closed or have the empty team property.
- Team-based logics are commonly not closed under uniform substitution, e.g., $p \models p \vee p$ but $(p \vee \neg p) \vee(p \vee \neg p) \not \vDash p \vee \neg p$

$$
\begin{array}{lll}
\left\{v_{p}\right\} & \models & p \mathbb{\vee} \neg p \\
\left\{v_{q}\right\} & \models & p \vee \neg p \\
\left\{v_{p}, v_{q}\right\} & \not \models & p \mathbb{\vee} \neg p \\
\left\{v_{p}, v_{q}\right\} & \models & (p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}) \\
\left\{v_{p}\right\} & \not \models & (p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}) \\
\left\{v_{p}, v_{q}\right\} & \models & (p \vee \neg p) \vee(p \vee \neg p) \\
\left\{v_{p}, v_{q}\right\} & \not \models & p \vee \neg p
\end{array}
$$

Expressive Completeness

Definition

- $\phi(N)$-the propositional variables in ϕ are among $N \subseteq$ Prop
- The domain of a team $s \subseteq 2^{N}$ is N-dom $(s)=N$. If $\operatorname{dom}(s)=N$, we also say s is a team over N.
- A (team) property \mathcal{P} (over N) is a class of teams (over N): $\mathcal{P} \subseteq 2^{2^{N}}$
- For a formula $\phi(N)$, the property (over N) defined by ϕ is $\|\phi\|_{N}:=\left\{s \subseteq 2^{N} \mid s \models \phi\right\}$
- For a class of properties $\mathbb{P} \subseteq 2^{2^{2^{\text {Prop }}}}$ and $N \subseteq \operatorname{Prop}, \mathbb{P}_{N}:=\left\{\mathcal{P} \in \mathbb{P} \mid \mathcal{P} \subseteq 2^{2^{N}}\right\}$.
- A logic (or language) \mathcal{L} is expressively complete for a class of properties \mathbb{P} iff for each finite $N \subseteq$ Prop:
$\|\mathcal{L}\| N:=\left\{\|\phi(N)\|_{N} \mid \phi \in \mathcal{L}\right\}=\mathbb{P}_{N}$

In practice we can usually ignore N and write $\|\phi\|,\|\mathcal{L}\|=\mathbb{P}$, etc.

Definition

- $\phi(N)$-the propositional variables in ϕ are among $N \subseteq$ Prop
- The domain of a team $s \subseteq 2^{N}$ is N - $\operatorname{dom}(s)=N$. If $\operatorname{dom}(s)=N$, we also say s is a team over N.
- A (team) property $\mathcal{P}($ over $N)$ is a class of teams (over N): $\mathcal{P} \subseteq 2^{2^{N}}$
- For a formula $\phi(N)$, the property (over N) defined by ϕ is $\|\phi\|_{N}:=\left\{s \subseteq 2^{N} \mid s \models \phi\right\}$.
- For a class of properties $\mathbb{m} \subseteq 2^{2^{2^{\text {Prop }}}}$ and $N \subseteq \operatorname{Prop}, \mathbb{T}_{N}:\left\{\mathcal{P} \in \mathbb{D} \mid \mathcal{P} \subseteq 2^{2^{N}}\right\}$.
- A logic (or language) \mathcal{L} is expressively complete for a class of properties \mathbb{P} iff for each finite $N \subseteq$ Prop:

$$
\|\mathcal{L}\|_{N}:=\left\{\|\phi(N)\|_{N} \mid \phi \in \mathcal{L}\right\}=\mathbb{P}_{N}
$$

In practice we can usually ignore N and write $\|\phi\|,\|\mathcal{L}\|=\mathbb{P}$, etc.

Definition

- $\phi(N)$-the propositional variables in ϕ are among $N \subseteq$ Prop
- The domain of a team $s \subseteq 2^{N}$ is N - $\operatorname{dom}(s)=N$. If $\operatorname{dom}(s)=N$, we also say s is a team over N.
- A (team) property $\mathcal{P}(\operatorname{over} N)$ is a class of teams (over $N): \mathcal{P} \subseteq 2^{2^{N}}$.
- For a formula $\phi(N)$, the property (over N) defined by ϕ is $\|\phi\|_{N}:=\left\{s \subseteq 2^{N} \mid s \models \phi\right\}$
- For a class of properties $\mathbb{P} \subseteq 2^{2^{2^{\text {Prop }}}}$ and $N \subseteq \operatorname{Prop}, \mathbb{P}_{N}:=\left\{\mathcal{P} \in \mathbb{P} \mid \mathcal{P} \subseteq 2^{2^{N}}\right\}$
- A logic (or language) \mathcal{L} is expressively complete for a class of properties \mathbb{P} iff for each finite $N \subseteq$ Prop:

$$
\|\mathcal{L}\|_{N}:=\left\{\|\phi(N)\|_{N} \mid \phi \in \mathcal{L}\right\}=\mathbb{P}_{N}
$$

In practice we can usually ignore N and write $\|\phi\|,\|\mathcal{L}\|=\mathbb{P}$, etc.

Definition

- $\phi(N)$-the propositional variables in ϕ are among $N \subseteq$ Prop
- The domain of a team $s \subseteq 2^{N}$ is N - $\operatorname{dom}(s)=N$. If $\operatorname{dom}(s)=N$, we also say s is a team over N.
- A (team) property $\mathcal{P}(\operatorname{over} N)$ is a class of teams (over N): $\mathcal{P} \subseteq 2^{2^{N}}$.
- For a formula $\phi(N)$, the property (over N) defined by ϕ is $\|\phi\|_{N}:=\left\{s \subseteq 2^{N} \mid s \models \phi\right\}$.
- For a class of properties $\mathbb{P} \subseteq 2^{2^{2^{\text {Prop }}}}$ and $N \subseteq \operatorname{Prop}, \mathbb{P}_{N}:=\left\{\mathcal{P} \in \mathbb{P} \mid \mathcal{P} \subseteq 2^{2^{N}}\right\}$
- A logic (or language) \mathcal{L} is expressively complete for a class of properties \mathbb{P} iff for each finite $N \subseteq$ Prop:

In practice we can usually ignore N and write $\|\phi\|,\|\mathcal{L}\|=\mathbb{P}$, etc.

Definition

- $\phi(N)$-the propositional variables in ϕ are among $N \subseteq$ Prop
- The domain of a team $s \subseteq 2^{N}$ is N - $\operatorname{dom}(s)=N$. If $\operatorname{dom}(s)=N$, we also say s is a team over N.
- A (team) property \mathcal{P} (over N) is a class of teams (over N): $\mathcal{P} \subseteq 2^{2^{N}}$.
- For a formula $\phi(N)$, the property (over N) defined by ϕ is $\|\phi\|_{N}:=\left\{s \subseteq 2^{N} \mid s \models \phi\right\}$.
- For a class of properties $\mathbb{P} \subseteq 2^{2^{2^{\text {Prop }}}}$ and $N \subseteq$ Prop, $\mathbb{P}_{N}:=\left\{\mathcal{P} \in \mathbb{P} \mid \mathcal{P} \subseteq 2^{2^{N}}\right\}$.
- A logic (or language) \mathcal{L} is expressively complete for a class of properties \mathbb{P} iff for each finite $N \subseteq$ Prop:

In practice we can usually ignore N and write $\|\phi\|,\|\mathcal{L}\|=\mathbb{P}$, etc.

Definition

- $\phi(N)$-the propositional variables in ϕ are among $N \subseteq$ Prop
- The domain of a team $s \subseteq 2^{N}$ is N - $\operatorname{dom}(s)=N$. If $\operatorname{dom}(s)=N$, we also say s is a team over N.
- A (team) property $\mathcal{P}(\operatorname{over} N)$ is a class of teams (over N): $\mathcal{P} \subseteq 2^{2^{N}}$.
- For a formula $\phi(N)$, the property (over N) defined by ϕ is $\|\phi\|_{N}:=\left\{s \subseteq 2^{N} \mid s \models \phi\right\}$.
- For a class of properties $\mathbb{P} \subseteq 2^{2^{2^{\text {Prop }}}}$ and $N \subseteq \operatorname{Prop}, \mathbb{P}_{N}:=\left\{\mathcal{P} \in \mathbb{P} \mid \mathcal{P} \subseteq 2^{2^{N}}\right\}$.
- A logic (or language) \mathcal{L} is expressively complete for a class of properties \mathbb{P} iff for each finite $N \subseteq$ Prop:

$$
\|\mathcal{L}\|_{N}:=\left\{\|\phi(N)\|_{N} \mid \phi \in \mathcal{L}\right\}=\mathbb{P}_{N}
$$

In practice we can usually ignore N and write $\|\phi\|,\|\mathcal{L}\|=\mathbb{P}$, etc.

Definition

- $\phi(N)$-the propositional variables in ϕ are among $N \subseteq$ Prop
- The domain of a team $s \subseteq 2^{N}$ is N - $\operatorname{dom}(s)=N$. If $\operatorname{dom}(s)=N$, we also say s is a team over N.
- A (team) property $\mathcal{P}(\operatorname{over} N)$ is a class of teams (over N): $\mathcal{P} \subseteq 2^{2^{N}}$.
- For a formula $\phi(N)$, the property (over N) defined by ϕ is $\|\phi\|_{N}:=\left\{s \subseteq 2^{N} \mid s \models \phi\right\}$.
- For a class of properties $\mathbb{P} \subseteq 2^{2^{2^{\text {Prop }}}}$ and $N \subseteq \operatorname{Prop}, \mathbb{P}_{N}:=\left\{\mathcal{P} \in \mathbb{P} \mid \mathcal{P} \subseteq 2^{2^{N}}\right\}$.
- A logic (or language) \mathcal{L} is expressively complete for a class of properties \mathbb{P} iff for each finite $N \subseteq$ Prop:

$$
\|\mathcal{L}\|_{N}:=\left\{\|\phi(N)\|_{N} \mid \phi \in \mathcal{L}\right\}=\mathbb{P}_{N}
$$

In practice we can usually ignore N and write $\|\phi\|,\|\mathcal{L}\|=\mathbb{P}$, etc.

We are particularly concerned with expressive completeness w.r.t. to classes of properties with specific closure properties. We say a property \mathcal{P} is downward closed if $s \in \mathcal{P}$ and $t \subseteq s$ implies $t \in \mathcal{P}$, etc.

We are particularly concerned with expressive completeness w.r.t. to classes of properties with specific closure properties. We say a property \mathcal{P} is downward closed if $s \in \mathcal{P}$ and $t \subseteq s$ implies $t \in \mathcal{P}$, etc.

Some uses of such an expressive completeness result:

- Constitutes a concise and tractable characterization of the logic in question

We are particularly concerned with expressive completeness w.r.t. to classes of properties with specific closure properties. We say a property \mathcal{P} is downward closed if $s \in \mathcal{P}$ and $t \subseteq s$ implies $t \in \mathcal{P}$, etc.

Some uses of such an expressive completeness result:

- Constitutes a concise and tractable characterization of the logic in question
- Allows for easy definability and uniform definability proofs

We are particularly concerned with expressive completeness w.r.t. to classes of properties with specific closure properties. We say a property \mathcal{P} is downward closed if $s \in \mathcal{P}$ and $t \subseteq s$ implies $t \in \mathcal{P}$, etc.

Some uses of such an expressive completeness result:

- Constitutes a concise and tractable characterization of the logic in question
- Allows for easy definability and uniform definability proofs
- Allows one to easily show the logic has other properties (e.g., uniform interpolation)

We are particularly concerned with expressive completeness w.r.t. to classes of properties with specific closure properties. We say a property \mathcal{P} is downward closed if $s \in \mathcal{P}$ and $t \subseteq s$ implies $t \in \mathcal{P}$, etc.

Some uses of such an expressive completeness result:

- Constitutes a concise and tractable characterization of the logic in question
- Allows for easy definability and uniform definability proofs
- Allows one to easily show the logic has other properties (e.g., uniform interpolation)
- The proofs of expressive completeness yield normal form for the logics. One can use these to prove the completeness of an axiomatization

Some results in the literature:

downward closed
$=(\cdot)$: extended dependence atoms: $s \vDash=\left(\alpha_{1}, \ldots, \alpha_{n}, \beta\right): \Longleftrightarrow$
$\forall w, w^{\prime} \in s:\left(w \vDash \alpha_{i} \Longleftrightarrow w^{\prime} \models \alpha_{i}\right.$ for all $\left.i \in\{1, \ldots, n\}\right)$ implies $w \vDash \beta \Longleftrightarrow w^{\prime} \vDash \beta$
$\subseteq:$ extended inclusion atoms: $s \models \alpha_{1}, \ldots \alpha_{n} \subseteq \beta_{1}, \ldots, \beta_{n}: \Longleftrightarrow$
$\forall w \in s: \exists v \in s: w \vDash \alpha_{i} \Longleftrightarrow v \vDash \beta_{i}$ for all $i \in\{1, \ldots, n\}$
\perp : extended independence atoms: $s \vDash \alpha_{1}, \ldots \alpha_{n} \gamma_{1}, \ldots, \gamma_{m} \beta_{1}, \ldots, \beta_{I}: \Longleftrightarrow$
$\forall w, w^{\prime} \in s:\left(w \models \gamma_{i} \Longleftrightarrow w^{\prime} \models \gamma_{i}\right)$ implies $\exists v \in s:\left(w \models \alpha_{i} \Longleftrightarrow v \models \alpha_{i}\right)$ and $\left(w^{\prime} \models \beta_{i} \Longleftrightarrow v \vDash \beta_{i}\right)$ and $\left(w \models \gamma_{i} \Longleftrightarrow v \models \gamma_{i}\right)$
\varnothing : emptiness operator: $s \vDash \varnothing \phi: \Longleftrightarrow s \vDash \phi$ or $s=\varnothing$
\sim : Boolean negation: $s \models \sim \phi: \Longleftrightarrow s \not \models \phi$

Normal Forms

To show, e.g., that PL is expressively complete for the class \mathbb{F} of flat properties-i.e., that $\|\mathrm{PL}\|=\mathbb{F}$-one constructs characteristic formulas for flat properties in PL.

Characteristic formulas for teams:

Characteristic formulas for flat properties: For $\mathcal{P} \in \mathbb{F}_{N}$ and t with domain N :
$\|\mathrm{PL}\|_{N} \subseteq \mathbb{F}_{N}$ since PL -formulas are flat. $\mathbb{F}_{N} \subseteq\|\mathrm{PL}\|_{N}$ since if $\mathcal{P} \in \mathbb{F}_{N}, \mathcal{P}=\left\|\bigvee_{s \in \mathcal{P}} \chi_{s}\right\|_{N} \in\|P L\|_{N}$

Normal Forms

To show, e.g., that PL is expressively complete for the class \mathbb{F} of flat properties-i.e., that $\|\mathrm{PL}\|=\mathbb{F}$-one constructs characteristic formulas for flat properties in PL.
Characteristic formulas for valuations:

$$
\begin{gathered}
\chi_{v}^{N}:=\wedge\{p \mid p \in N, v \models p\} \wedge \wedge\{\neg p \mid p \in N, v \not \models p\} \\
w \models \chi_{v}^{N} \Longleftrightarrow w \upharpoonright N=v \uparrow N \\
\text { if } \operatorname{dom}(v)=\operatorname{dom}(w)=N: w \vDash \chi_{v}^{N} \Longleftrightarrow w=v
\end{gathered}
$$

Characteristic formulas for teams:

Characteristic formulas for flat properties: For $\mathcal{P} \in \mathbb{F}_{N}$ and t with domain N :

Normal Forms

To show, e.g., that PL is expressively complete for the class \mathbb{F} of flat properties-i.e., that $\|\mathrm{PL}\|=\mathbb{F}$-one constructs characteristic formulas for flat properties in PL.
Characteristic formulas for valuations:

$$
\begin{gathered}
\chi_{v}^{N}:=\wedge\{p \mid p \in N, v \models p\} \wedge \wedge\{\neg p \mid p \in N, v \not \models p\} \\
w \models \chi_{v}^{N} \Longleftrightarrow w \upharpoonright N=v \uparrow N \\
\text { if } \operatorname{dom}(v)=\operatorname{dom}(w)=N: w \vDash \chi_{v}^{N} \Longleftrightarrow w=v
\end{gathered}
$$

Characteristic formulas for teams:

$$
\begin{gathered}
\chi_{s}^{N}:=\bigvee_{v \in s} \chi_{v}^{N} \\
t \models \chi_{s}^{N} \Longleftrightarrow t \upharpoonright N \subseteq s \upharpoonright N \text { where } t \uparrow N=\{w \upharpoonright N \mid w \in t\} \\
\text { if } \operatorname{dom}(t)=\operatorname{dom}(s)=N: t \models \chi_{s}^{N} \Longleftrightarrow t \subseteq s
\end{gathered}
$$

Characteristic formulas for flat properties: For $\mathcal{P} \in \mathbb{F}_{N}$ and t with domain N :

Normal Forms

To show, e.g., that PL is expressively complete for the class \mathbb{F} of flat properties-i.e., that $\|\mathrm{PL}\|=\mathbb{F}$-one constructs characteristic formulas for flat properties in PL.
Characteristic formulas for valuations:

$$
\begin{gathered}
\chi_{v}^{N}:=\wedge\{p \mid p \in N, v \models p\} \wedge \wedge\{\neg p \mid p \in N, v \not \models p\} \\
w \models \chi_{v}^{N} \Longleftrightarrow w \upharpoonright N=v \uparrow N \\
\text { if } \operatorname{dom}(v)=\operatorname{dom}(w)=N: w \vDash \chi_{v}^{N} \Longleftrightarrow w=v
\end{gathered}
$$

Characteristic formulas for teams:

$$
\begin{gathered}
\chi_{s}^{N}:=\bigvee_{v \in s} \chi_{v}^{N} \\
t \models \chi_{s}^{N} \Longleftrightarrow t \upharpoonright N \subseteq s \upharpoonright N \text { where } t \upharpoonright N=\{w \upharpoonright N \mid w \in t\} \\
\text { if } \operatorname{dom}(t)=\operatorname{dom}(s)=N: t \models \chi_{s}^{N} \Longleftrightarrow t \subseteq s
\end{gathered}
$$

Characteristic formulas for flat properties: For $\mathcal{P} \in \mathbb{F}_{N}$ and t with domain N :

$$
t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{N} \Longleftrightarrow t \in \mathcal{P}, \quad \text { i.e., } \quad \mathcal{P}=\left\|\bigvee_{s \in \mathcal{P}} \chi_{s}^{N}\right\|_{N}
$$

$\|P L\|_{N} \subseteq \mathbb{F}_{N}$ since $P L$-formulas are flat. $\mathbb{F}_{N} \subseteq\|P L\|_{N}$ since if $\mathcal{P} \in \mathbb{F}_{N}, \mathcal{P}=\left\|V_{s \in \mathcal{P}} \chi_{s}\right\|_{N} \in\|P L\|_{N}$.

Normal Forms

To show, e.g., that PL is expressively complete for the class \mathbb{F} of flat properties-i.e., that $\|\mathbf{P L}\|=\mathbb{F}$-one constructs characteristic formulas for flat properties in PL.
Characteristic formulas for valuations:

$$
\begin{gathered}
\chi_{v}^{N}:=\wedge\{p \mid p \in N, v \models p\} \wedge \wedge\{\neg p \mid p \in N, v \not \models p\} \\
w \models \chi_{v}^{N} \Longleftrightarrow w \upharpoonright N=v \uparrow N \\
\text { if } \operatorname{dom}(v)=\operatorname{dom}(w)=N: w \vDash \chi_{v}^{N} \Longleftrightarrow w=v
\end{gathered}
$$

Characteristic formulas for teams:

$$
\begin{gathered}
\chi_{s}^{N}:=\bigvee_{v \in s} \chi_{v}^{N} \\
t \models \chi_{s}^{N} \Longleftrightarrow t \upharpoonright N \subseteq s \upharpoonright N \text { where } t \upharpoonright N=\{w \upharpoonright N \mid w \in t\} \\
\text { if } \operatorname{dom}(t)=\operatorname{dom}(s)=N: t \vDash \chi_{s}^{N} \Longleftrightarrow t \subseteq s
\end{gathered}
$$

Characteristic formulas for flat properties: For $\mathcal{P} \in \mathbb{F}_{N}$ and t with domain N :

$$
t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{N} \Longleftrightarrow t \in \mathcal{P}, \quad \text { i.e., } \quad \mathcal{P}=\left\|\bigvee_{s \in \mathcal{P}} \chi_{s}^{N}\right\|_{N}
$$

$\|\mathbf{P L}\|_{N} \subseteq \mathbb{F}_{N}$ since $\mathbf{P L}$-formulas are flat. $\mathbb{F}_{N} \subseteq\|\mathbf{P L}\|_{N}$ since if $\mathcal{P} \in \mathbb{F}_{N}, \mathcal{P}=\left\|\bigvee_{s \in \mathcal{P}} \chi_{s}\right\|_{N} \in\|P L\|_{N}$.

Normal forms

Logic	Normal Form	Type of property characterized
PL	$V_{s \in \mathcal{P}} \chi_{s}$	Flat
PL（ V^{\prime} ）	$\bigvee_{s \in \mathcal{P}} \chi_{s}$	Downward closed，empty team property
PL（ $=(\cdot))$	$\wedge_{s \in 2^{2 N} \backslash \mathcal{P}_{N}}\left(\gamma_{s} \vee \chi_{2^{N} \backslash s}\right)$	Downward closed，empty team property
$\mathrm{PL}(\subseteq)$	$\bigvee_{s \in \mathcal{P}}\left(\chi_{s} \wedge \wedge_{v \in s} T \subseteq \chi_{v}\right)$	Union closed，empty team property
$\mathrm{PL}(\subseteq, 1 \mathrm{~V})$	$\bigvee_{s \in \mathcal{P}}\left(\chi_{s} \wedge \wedge_{v \in s} T \subseteq \chi_{v}\right)$	Empty team property
PL（NE，©）	$\bigvee_{s \in \mathcal{P}} \oslash V_{v \in s}\left(\chi_{v} \wedge N E\right)$	Union closed
PL（ne，V ）	$\bigvee_{s \in \mathcal{P}} V_{v \in s}\left(\chi_{v} \wedge\right.$ NE $)$	All properties

（For the $\mathbf{P L}(=(\cdot))$－normal form，define $\gamma_{0}^{s}:=\perp ; \gamma_{1}^{s}:=\bigwedge\{=(p) \mid p \in \operatorname{dom}(s)\} \gamma_{n}:=\bigvee_{1}^{n} \gamma_{1}$ for $n \geq 2$ ．）

To show expressive completeness of $\mathrm{PL}(\mathrm{NE})$, we consider the following closure property:

Definition

ϕ is convex if $(s \models \phi, t \models \phi$ and $s \subseteq u \subseteq t)$ implies $u \models \phi$.

To show expressive completeness of $\mathrm{PL}(\mathrm{NE})$, we consider the following closure property:

Definition

ϕ is convex if ($s \models \phi, t \models \phi$ and $s \subseteq u \subseteq t$) implies $u \models \phi$.

Observe that:

- ϕ is downward closed $\Longleftrightarrow \phi$ is convex and if there is some t s.t. $t \models \phi$, then $\varnothing \models \phi$ (similarly \mathcal{P} is downward closed $\Longleftrightarrow \mathcal{P}$ is convex and if $\mathcal{P} \neq \varnothing$, then $\varnothing \in \mathcal{P}$).

To show expressive completeness of $\mathrm{PL}(\mathrm{NE})$, we consider the following closure property:

Definition

ϕ is convex if $(s \models \phi, t \models \phi$ and $s \subseteq u \subseteq t)$ implies $u \models \phi$.

Observe that:

- ϕ is downward closed $\Longleftrightarrow \phi$ is convex and if there is some t s.t. $t \models \phi$, then $\varnothing \models \phi$ (similarly \mathcal{P} is downward closed $\Longleftrightarrow \mathcal{P}$ is convex and if $\mathcal{P} \neq \varnothing$, then $\varnothing \in \mathcal{P}$).
- Let ϕ be upward closed if ($s \models \phi$ and $t \supseteq s$) implies $t \models \phi$.

Then $\phi(N)$ is upward closed $\Longleftrightarrow \phi$ is convex and if there is some t with $\operatorname{dom}(t)=N$ s.t. $t \models \phi$, then $2^{N} \models \phi$.
(similarly \mathcal{P} over N is upward closed $\Longleftrightarrow \mathcal{P}$ is convex and if $\mathcal{P} \neq \varnothing$, then $2^{N} \in \mathcal{P}$)
An example: $q \vee((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$ is not convex:

- $\left\{w_{p q}\right\} \models q$ so $\left\{w_{p q}\right\} \models q \mathbb{V}((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$

To show expressive completeness of $\mathrm{PL}(\mathrm{NE})$, we consider the following closure property:

Definition

ϕ is convex if $(s \models \phi, t \models \phi$ and $s \subseteq u \subseteq t)$ implies $u \models \phi$.

Observe that:

- ϕ is downward closed $\Longleftrightarrow \phi$ is convex and if there is some t s.t. $t \models \phi$, then $\varnothing \models \phi$ (similarly \mathcal{P} is downward closed $\Longleftrightarrow \mathcal{P}$ is convex and if $\mathcal{P} \neq \varnothing$, then $\varnothing \in \mathcal{P}$).
- Let ϕ be upward closed if ($s \models \phi$ and $t \supseteq s$) implies $t \models \phi$.

Then $\phi(N)$ is upward closed $\Longleftrightarrow \phi$ is convex and if there is some t with $\operatorname{dom}(t)=N$ s.t. $t \models \phi$, then $2^{N} \models \phi$.
(similarly \mathcal{P} over N is upward closed $\Longleftrightarrow \mathcal{P}$ is convex and if $\mathcal{P} \neq \varnothing$, then $2^{N} \in \mathcal{P}$)
An example: $q \vee((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$ is not convex:

- $\left\{w_{p q}\right\} \models q$ so $\left\{w_{p q}\right\} \models q \mathbb{V}((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$
- $\left\{w_{p q}, w_{p \bar{q}}, w_{\bar{p} q}\right\} \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{w_{p q}, w_{p \bar{q}}, w_{\bar{p} q}\right\} \vDash q \vee((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$

To show expressive completeness of $\mathrm{PL}(\mathrm{NE})$, we consider the following closure property:

Definition

ϕ is convex if $(s \models \phi, t \models \phi$ and $s \subseteq u \subseteq t)$ implies $u \models \phi$.

Observe that:

- ϕ is downward closed $\Longleftrightarrow \phi$ is convex and if there is some t s.t. $t \models \phi$, then $\varnothing \models \phi$ (similarly \mathcal{P} is downward closed $\Longleftrightarrow \mathcal{P}$ is convex and if $\mathcal{P} \neq \varnothing$, then $\varnothing \in \mathcal{P}$).
- Let ϕ be upward closed if ($s \models \phi$ and $t \supseteq s$) implies $t \models \phi$.

Then $\phi(N)$ is upward closed $\Longleftrightarrow \phi$ is convex and if there is some t with $\operatorname{dom}(t)=N$ s.t. $t \models \phi$, then $2^{N} \models \phi$.
(similarly \mathcal{P} over N is upward closed $\Longleftrightarrow \mathcal{P}$ is convex and if $\mathcal{P} \neq \varnothing$, then $2^{N} \in \mathcal{P}$)
An example: $q \vee((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$ is not convex:

- $\left\{w_{p q}\right\} \models q$ so $\left\{w_{p q}\right\} \models q \vee((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$
- $\left\{w_{p q}, w_{p \bar{q}}, w_{\bar{p} q}\right\} \vDash(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{w_{p q}, w_{p \bar{q}}, w_{\bar{p} q}\right\} \vDash q \mathbb{} \mathrm{~V}((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$
- But $\left\{w_{p q}, w_{p \bar{q}}\right\} \not \vDash q \mathbb{V}((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE}))$

Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

```
Proof.
c:By induction on }\phi\mathrm{ . The only nontrivial case is showing }\psiv\chi\mathrm{ is convex when }\psi,\chi\mathrm{ are union closed
convex
Let }s\models\psi\vee\chi,t\models\psi\vee\chi\mathrm{ , and }s\subsetequ\subseteqt,\mathrm{ where }\psi,\chi\mathrm{ are union closed and convex. Then s= s}\psi\cup\mp@subsup{s}{\chi}{}\mathrm{ and
t = t _ { \psi } \cup t _ { \chi } \text { where } t _ { \psi } \models \psi \text { , etc. By union closure, } \cup \| \psi \| \models \psi \text { and } \cup \| \chi \| \models \chi \text { . We have}
s}\subsetneq\subsetequ\cap\cup|\psi|\subseteq\bigcup|\psi| and s\chi\subsetequ\cap\bigcup|\chi|\subseteq\bigcup|\chi| so u\cap\bigcup|\psi|\models\psi and u\capU|\chi|\models\chi by convexity
u\subseteqt}\mp@subsup{t}{\psi}{}\cup\mp@subsup{t}{\chi}{}\subseteq\cup|\psi|\cup\cup|\chi| so u\subseteq(u\cap\cup|\psi||)\cup(u\cap\cup|\chi|), whence u=(u\cap\cup|\psi|)\cup(u\cap\cup|\chi|
Therefore }u\vDash\psi\vee\chi\mathrm{ .
```

Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.
Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.

Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.
Let $s \models \psi \vee \chi, t \models \psi \vee \chi$, and $s \subseteq u \subseteq t$, where ψ, χ are union closed and convex. Then $s=s_{\psi} \cup s_{\chi}$ and $t=t_{\psi} \cup t_{\chi}$ where $t_{\psi} \models \psi$, etc. By union closure, $\cup\|\psi\| \models \psi$ and $\cup\|\chi\| \models \chi$. We have
 $u \subseteq t_{\psi} \cup t_{\chi} \subseteq \cup\|\psi\| \cup \cup\|\chi\|$ so $u \subseteq(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$, whence $u=(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$. Therefore $u \vDash \psi \vee \chi$

Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.
Let $s \models \psi \vee \chi, t \models \psi \vee \chi$, and $s \subseteq u \subseteq t$, where ψ, χ are union closed and convex. Then $s=s_{\psi} \cup s_{\chi}$ and $t=t_{\psi} \cup t_{\chi}$ where $t_{\psi} \models \psi$, etc. By union closure, $\cup\|\psi\| \vDash \psi$ and $\cup\|\chi\| \vDash \chi$. We have $s_{\psi} \subseteq u \cap \cup\|\psi\| \subseteq \bigcup\|\psi\|$ and $s_{\chi} \subseteq u \cap \bigcup\|\chi\| \subseteq \bigcup\|\chi\|$ so $u \cap \cup\|\psi\| \models \psi$ and $u \cap \cup\|\chi\| \vDash \chi$ by convexity. $u \subseteq t_{\psi} \cup t_{\chi} \subseteq \cup\|\psi\| \cup \cup\|\chi\|$ so $u \subseteq(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$, whence $u=(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$. Therefore $u \vDash \psi \vee \chi$.

Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.
Let $s \models \psi \vee \chi, t \models \psi \vee \chi$, and $s \subseteq u \subseteq t$, where ψ, χ are union closed and convex. Then $s=s_{\psi} \cup s_{\chi}$ and $t=t_{\psi} \cup t_{\chi}$ where $t_{\psi} \models \psi$, etc. By union closure, $\cup\|\psi\| \models \psi$ and $\cup\|\chi\| \models \chi$. We have

Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.
Let $s \models \psi \vee \chi, t \models \psi \vee \chi$, and $s \subseteq u \subseteq t$, where ψ, χ are union closed and convex. Then $s=s_{\psi} \cup s_{\chi}$ and $t=t_{\psi} \cup t_{\chi}$ where $t_{\psi} \models \psi$, etc. By union closure, $\cup\|\psi\| \models \psi$ and $\cup\|\chi\| \vDash \chi$. We have $s_{\psi} \subseteq u \cap \bigcup\|\psi\| \subseteq \bigcup\|\psi\|$ and $s_{\chi} \subseteq u \cap \bigcup\|\chi\| \subseteq \bigcup\|\chi\|$ so $u \cap \bigcup\|\psi\| \models \psi$ and $u \cap \bigcup\|\chi\| \models \chi$ by convexity.
$u \subseteq t_{\psi} \cup t_{\chi} \subseteq \cup\|\psi\| \cup \bigcup\|\chi\|$ so $u \subseteq(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$, whence $u=(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$.
Therefore $u \vDash \psi \vee \chi$.

Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.
Let $s \models \psi \vee \chi, t \models \psi \vee \chi$, and $s \subseteq u \subseteq t$, where ψ, χ are union closed and convex. Then $s=s_{\psi} \cup s_{\chi}$ and $t=t_{\psi} \cup t_{\chi}$ where $t_{\psi} \models \psi$, etc. By union closure, $\cup\|\psi\| \models \psi$ and $\cup\|\chi\| \vDash \chi$. We have $s_{\psi} \subseteq u \cap \bigcup\|\psi\| \subseteq \bigcup\|\psi\|$ and $s_{\chi} \subseteq u \cap \bigcup\|\chi\| \subseteq \bigcup\|\chi\|$ so $u \cap \bigcup\|\psi\| \models \psi$ and $u \cap \bigcup\|\chi\| \models \chi$ by convexity. $u \subseteq t_{\psi} \cup t_{\chi} \subseteq \cup\|\psi\| \cup \cup\|\chi\|$ so $u \subseteq(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$,

[^0]Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.
Let $s \models \psi \vee \chi, t \models \psi \vee \chi$, and $s \subseteq u \subseteq t$, where ψ, χ are union closed and convex. Then $s=s_{\psi} \cup s_{\chi}$ and $t=t_{\psi} \cup t_{\chi}$ where $t_{\psi} \models \psi$, etc. By union closure, $\cup\|\psi\| \models \psi$ and $\cup\|\chi\| \vDash \chi$. We have $s_{\psi} \subseteq u \cap \bigcup\|\psi\| \subseteq \bigcup\|\psi\|$ and $s_{\chi} \subseteq u \cap \bigcup\|\chi\| \subseteq \bigcup\|\chi\|$ so $u \cap \bigcup\|\psi\| \models \psi$ and $u \cap \bigcup\|\chi\| \models \chi$ by convexity. $u \subseteq t_{\psi} \cup t_{\chi} \subseteq \bigcup\|\psi\| \cup \bigcup\|\chi\|$ so $u \subseteq(u \cap \bigcup\|\psi\|) \cup(u \cap \cup\|\chi\|)$, whence $u=(u \cap \bigcup\|\psi\|) \cup(u \cap \cup\|\chi\|)$.

[^1]Let $\mathbb{C} \mathbb{U}$ be the class of convex, union-closed properties.

Theorem (Knudstorp)

$$
\|\mathrm{PL}(\mathrm{NE})\|=\mathbb{C} \mathbb{U}
$$

Proof.

\subseteq : By induction on ϕ. The only nontrivial case is showing $\psi \vee \chi$ is convex when ψ, χ are union closed convex.
Let $s \models \psi \vee \chi, t \models \psi \vee \chi$, and $s \subseteq u \subseteq t$, where ψ, χ are union closed and convex. Then $s=s_{\psi} \cup s_{\chi}$ and $t=t_{\psi} \cup t_{\chi}$ where $t_{\psi} \models \psi$, etc. By union closure, $\cup\|\psi\| \models \psi$ and $\cup\|\chi\| \vDash \chi$. We have $s_{\psi} \subseteq u \cap \bigcup\|\psi\| \subseteq \bigcup\|\psi\|$ and $s_{\chi} \subseteq u \cap \bigcup\|\chi\| \subseteq \bigcup\|\chi\|$ so $u \cap \bigcup\|\psi\| \models \psi$ and $u \cap \cup\|\chi\| \models \chi$ by convexity. $u \subseteq t_{\psi} \cup t_{\chi} \subseteq \cup\|\psi\| \cup \bigcup\|\chi\|$ so $u \subseteq(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$, whence $u=(u \cap \cup\|\psi\|) \cup(u \cap \cup\|\chi\|)$.
Therefore $u \models \psi \vee \chi$.

Proof.

〇: Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge N E\| \in\|P L(N E)\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{n}}\right.$ where N is finite, so \mathcal{P} is finite). We show

$$
\mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \operatorname{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\|
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v} \mid j \in J_{v}\right\} \subseteq \bar{\Pi} \mathcal{P}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{j} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models V_{v \in t_{i}} V_{j \in J_{v}}\left(\chi_{s_{i}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models V_{s \in \bar{\Pi}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models V_{s c \bar{\Pi} \mathcal{D}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s c \overline{\Pi D}} t_{s}$ where $t_{s} \vDash \chi_{s} \wedge$ NE.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \nsubseteq \bigcup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \not \ddagger t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \bar{\Pi} \mathcal{P}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$ Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof．

〕：Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$ ．If $\mathcal{P}=\varnothing$ ，then it is $\|\perp \wedge \mathrm{NE}\| \in\|\mathbf{P L}(\mathrm{NE})\|$ ．Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{n}}\right.$ where N is finite，so P is finite）．We show
$\mathcal{P}=\| \bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge\right.$ NE $\left.\mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\|=\| \underset{s \in \Pi \bar{P}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right) \|$

〔：Let $t_{i} \in \mathcal{P}$ ．Then $t_{i}=\cup_{v \in t_{i}}\{v\}$ ．For each $v \in t_{i}$ ，there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$ ．Then $\{v\} \vDash \chi_{s, j} \wedge$ NE for all $j \in J_{v}$ and so $t_{i} \vDash V_{v \in t_{i}} V_{j \in J_{v}}\left(\chi_{s_{i}} \wedge \mathrm{NE}\right)$ ．For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}$ for some $j \in J_{v_{i}}$ ．Therefore $\left\{s_{v} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$ ，and so $t_{i} \vDash V_{s \in \Pi \mathcal{P}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ ．
〕：Let $t \vDash \mathrm{~V}_{s \in \Pi \mathcal{P}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \Pi \mathcal{P}} t_{s}$ where $t_{s} \vDash \chi_{s} \wedge \mathrm{NE}$ ．
We show $t \subseteq \cup \mathcal{P}$ ；assume for contradiction that $t \not \ddagger \cup \mathcal{P}$ ．Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{t} \in \mathcal{T}$ ．Then for any $s \in \overline{\Pi T}, v+s$ ．Dy $t=U_{s \in \Pi p} t_{s}$ we must have $v e t_{s}$ for some $s \in \overline{\Pi P}$ ，where $t_{s} \vDash \chi_{s} \wedge \mathrm{NE}$ ．But then $v \in t_{s} \subseteq s$ and $v \notin s$ ，a contradiction．
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$ ；assume for contradiction that $t_{i} \not \ddagger t$ for all $t_{i} \in \mathcal{P}$ ．Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$ ．We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \bar{\Pi}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$ Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$ ．But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$ ，a contradiction． We now have $t_{i} \subseteq t \subseteq \cup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure，and therefore $t \in \mathcal{P}$ by convexity．

Proof.

Э: Let $\mathcal{P}_{N} \in \mathbb{C}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

$t_{i} \vDash V_{v \in t_{i}} V_{j \in J_{v}}\left(\chi_{s_{v}} \wedge \mathrm{NE}\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{V_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \vDash V_{s \in \bar{\Pi}}\left(\chi_{s} \wedge \mathrm{NE}\right)$. ?: Let $t \vDash \mathrm{~V}_{s \in \Pi \mathcal{P}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \Pi \mathcal{P}} t_{s}$ where $t_{s} \vDash \chi_{s} \wedge \mathrm{NE}$. We show $t \subseteq \cup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi P}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \vDash \chi_{s} \wedge \mathrm{NE}$. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction. Whe now show t. $\leq t$ for some $t, \in \mathcal{P}$; ascume for contradiction that t. $\not+t$ for all $t, \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \vDash \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

〕: Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\mathrm{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v} \mid j \in J_{v}\right\} \subseteq \prod \mathcal{P}$ such that $v \in s_{v}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge N E$ for all $j \in J_{v}$ and so
$t_{i} \models V_{v \in t_{i}} V_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models V_{s c \pi \bar{p}}\left(\chi_{s} \wedge \mathrm{NE}\right)$. \supseteq : Let $t \models V_{s \in \Pi \mathcal{P}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \bar{\Pi}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$. We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \vDash \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \not \ddagger t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \vDash \chi_{s} \wedge \wedge N E$ for all $j \in J_{v}$ and so

some $j \in J_{v_{i}}$. Therefore $\left\{s_{v} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models V_{s \in \bar{\Pi}}\left(\chi_{s} \wedge\right.$ NE $)$. \supseteq : Let $t \models V_{s \in \overline{\Pi P}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \vDash \chi_{s} \wedge \mathrm{NE}$. We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \notin \bigcup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction. We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \notin t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \cup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.													

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \bar{\Pi} \bar{P}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models V_{s \in \Pi \mathcal{P}}\left(\chi_{s} \wedge \mathrm{NE}\right)$. \supseteq : Let $t \models \mathrm{~V}_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \vDash \chi_{s} \wedge \mathrm{NE}$. We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=U_{s \in \Pi \mathcal{P}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{j} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \operatorname{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\| \underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \text { NE }\right) \| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$.

We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \nsubseteq \bigcup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction. We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \not \ddagger t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$ Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.

[^2]
Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
?: Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \nsubseteq \bigcup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\cup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{j} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \operatorname{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\| \underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \text { NE }\right) \| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \nsubseteq \bigcup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\cup_{s \in \bar{\Pi} \mathcal{P}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \vDash \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \notin t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \operatorname{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\| \underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \text { NE }\right) \| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \nsubseteq \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=U_{s \in \bar{\Pi}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where
$t_{s} \vDash \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \not \ddagger t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=U_{s \in \Pi \mathcal{P}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where
$t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{j} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \operatorname{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\| \underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \text { NE }\right) \| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \operatorname{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\| \underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \text { NE }\right) \| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{j} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so $t_{s}=\chi_{u} \wedge$ NE for some $t_{s} \subseteq t$ Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \operatorname{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\| \underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \text { NE }\right) \| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \prod \mathcal{P}$ so $t_{s}=\chi_{u} \wedge N E$ for some $t_{s} \subseteq t$ Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so $t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models V_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \in t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so $t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models V_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
\supseteq : Let $t \models \bigvee_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction.

Proof.

\supseteq : Let $\mathcal{P}_{N} \in \mathbb{C} \mathbb{U}_{N}$. If $\mathcal{P}=\varnothing$, then it is $\|\perp \wedge \mathrm{NE}\| \in\|\operatorname{PL}(\mathrm{NE})\|$. Otherwise let $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}\left(\mathcal{P} \subseteq 2^{2^{N}}\right.$ where N is finite, so \mathcal{P} is finite). We show:

$$
\begin{aligned}
& \mathcal{P}=\left\|\bigvee\left\{\left(\chi_{v_{1}} \vee \ldots \vee \chi_{v_{n}}\right) \wedge \mathrm{NE} \mid\left(v_{1} \times \ldots \times v_{n}\right) \in\left(t_{1} \times \ldots \times t_{n}\right)\right\}\right\|=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
& \text { where } \overline{\prod \mathcal{P}}=\left\{\left\{v_{1}, \ldots, v_{n}\right\} \mid\left(v_{1} \ldots, v_{n}\right) \in \prod \mathcal{P}\right\}
\end{aligned}
$$

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i}=\bigcup_{v \in t_{i}}\{v\}$. For each $v \in t_{i}$, there is some $\left\{s_{v}^{j} \mid j \in J_{v}\right\} \subseteq \overline{\Pi \mathcal{P}}$ such that $v \in s_{v}^{j}$ and hence also $\{v\} \subseteq s_{v}^{j}$ for all $j \in J_{v}$. Then $\{v\} \models \chi_{s_{v}} \wedge$ NE for all $j \in J_{v}$ and so
$t_{i} \models \bigvee_{v \in t_{i}} \bigvee_{j \in J_{v}}\left(\chi_{s_{v}} \wedge N E\right)$. For each $s \in \overline{\Pi \mathcal{P}}$ there is some $v_{i} \in s$ such that $v_{i} \in t_{i}$ whence $s=s_{v_{i}}^{j}$ for some $j \in J_{v_{i}}$. Therefore $\left\{s_{v}^{j} \mid v \in t_{i}, j \in J_{v}\right\}=\overline{\Pi \mathcal{P}}$, and so $t_{i} \models V_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$.
〇: Let $t \models V_{s \in \overline{\Pi \mathcal{P}}}\left(\chi_{s} \wedge \mathrm{NE}\right)$ so that $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ where $t_{s} \models \chi_{s} \wedge \mathrm{NE}$.
We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \cup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P} . \cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

Updated picture：

Updated picture:

Updated picture:

What logic is expressively complete for convex properties? Note that
ϕ is convex and has the empty team property \Longleftrightarrow
ϕ is downward closed and has the empty team property
So $\operatorname{PL}(\mathbb{V})$ and $\operatorname{PL}(=(\cdot))$ are expressively complete for convex properties with the empty team property.

Recall our characteristic formulas for convex union-closed properties:

$$
\begin{array}{ll}
\text { If } \mathcal{P} \neq \varnothing: & \mathcal{P}=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
\text { If } \mathcal{P}=\varnothing: & \mathcal{P}=\|\Perp\|
\end{array}
$$

(where $\Perp:=\perp \wedge$ NE.) Equivalently we may use:

$\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)\right\|$ If $\mathcal{P}=\varnothing$:

$$
\mathcal{P}=\|\Perp\|
$$

where $T:=\neg \perp$. Here $V_{t \in \mathcal{P}} \chi_{t}$ is a characteristic formula for flat properties, and $\wedge_{s \in \Pi \mathcal{P}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)$ is a characteristic formula for upward-closed properties.

To get a characteristic formula for (non-empty) convex properties, simply replace the first conjunct with a characteristic formula for downward-closed properties:

Recall our characteristic formulas for convex union-closed properties:

$$
\begin{array}{ll}
\text { If } \mathcal{P} \neq \varnothing: & \mathcal{P}=\left\|\underset{s \in \frac{\bigvee \mathcal{P}}{}}{ }\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
\text { If } \mathcal{P}=\varnothing: & \mathcal{P}=\|\Perp\|
\end{array}
$$

(where $\Perp:=\perp \wedge$ NE.) Equivalently we may use:

$$
\begin{array}{ll}
\text { If } \mathcal{P} \neq \varnothing: & \mathcal{P}=\| \bigvee_{t \in \mathcal{P}}, \\
\text { If } \mathcal{P}=\varnothing: & \mathcal{P}=\|\Perp\|
\end{array}
$$

where $T:=\neg \perp$. Here $V_{t \in \mathcal{P}} \chi_{t}$ is a characteristic formula for flat properties, and $\wedge_{s \in \Pi \mathcal{P}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)$ is a characteristic formula for upward-closed properties.

To get a characteristic formula for (non-empty) convex properties, simply replace the first conjunct with a characteristic formula for downward-closed properties:

Recall our characteristic formulas for convex union-closed properties:

$$
\begin{array}{ll}
\text { If } \mathcal{P} \neq \varnothing: & \mathcal{P}=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{\bigvee}\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
\text { If } \mathcal{P}=\varnothing: & \mathcal{P}=\|\Perp\|
\end{array}
$$

(where $\Perp:=\perp \wedge$ NE.) Equivalently we may use:

$$
\begin{array}{ll}
\text { If } \mathcal{P} \neq \varnothing: & \mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \bigwedge_{s \in \overline{\overline{\Pi_{\mathcal{P}}}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\| \\
\text { If } \mathcal{P}=\varnothing: & \mathcal{P}=\|\Perp\|
\end{array}
$$

where $T:=\neg \perp$. Here $\bigvee_{t \in \mathcal{P}} \chi_{t}$ is a characteristic formula for flat properties, and $\wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)$ is a characteristic formula for upward-closed properties.

> To get a characteristic formula for (non-empty) convex properties, simply replace the first conjunct with a characteristic formula for downward-closed properties:

Recall our characteristic formulas for convex union-closed properties:

$$
\begin{array}{ll}
\text { If } \mathcal{P} \neq \varnothing: & \mathcal{P}=\left\|\underset{s \in \overline{\Pi \mathcal{P}}}{ }\left(\chi_{s} \wedge \mathrm{NE}\right)\right\| \\
\text { If } \mathcal{P}=\varnothing: & \mathcal{P}=\|\Perp\|
\end{array}
$$

(where $\Perp:=\perp \wedge$ NE.) Equivalently we may use:

$$
\begin{array}{ll}
\text { If } \mathcal{P} \neq \varnothing: & \mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \bigwedge_{s \in \overline{\overline{\Pi_{\mathcal{P}}}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\| \\
\text { If } \mathcal{P}=\varnothing: & \mathcal{P}=\|\Perp\|
\end{array}
$$

where $T:=\neg \perp$. Here $\bigvee_{t \in \mathcal{P}} \chi_{t}$ is a characteristic formula for flat properties, and $\wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)$ is a characteristic formula for upward-closed properties.

To get a characteristic formula for (non-empty) convex properties, simply replace the first conjunct with a characteristic formula for downward-closed properties:

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|
$$

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof

 second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \vee_{w \in S \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

き: Let $u \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)$. By $u \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u$; assume for contradiction that $t_{i} \not \ddagger u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so by
$u \vDash \Lambda_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$, we have $u \models\left(\chi_{y} \wedge \mathrm{NE}\right) \vee T$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime} \models \chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \notin u$, a contradiction. We now have $t_{i} \subseteq u \subseteq t$, so by convexity $u \in \mathcal{P}$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\prod_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee T\right)\right\|_{N}
$$

Proof.

 second conjunct is T (we stipulate $\wedge \varnothing:=\top$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly
$t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \vee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$
 whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u_{;}$assume for contradiction that $t_{i} \not \ddagger u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so by $u \models \bigwedge_{s \in \overline{\Pi P}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)$, we have $u \models\left(\chi_{y} \wedge \mathrm{NE}\right) \vee T$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime} \models \chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \notin u$, a contradiction. We now have $t_{i} \subseteq u \subseteq t_{\text {, }}$ so by convexity $u \in \mathcal{P}$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\prod_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee T\right)\right\|_{N}
$$

Proof.

 second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \bar{\Pi} \mathcal{P}$. We have

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\prod_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee T\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly
$t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \vee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\prod_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee T\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge \mathrm{NE}\right) \vee \mathrm{T}$. Therefore also t^{2}

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\prod_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee T\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\prod_{\mathcal{P}}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

〇: Let $u \models \bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$. By $u \models \bigvee_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u ;$ assume for contradiction that $t_{i} \nsubseteq u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so by
$u \models \bigwedge_{c \in \bar{\pi}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$, we have $u \models\left(\chi_{v} \wedge N E\right) \vee T$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime} \models \chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \notin u$, a contradiction
We now have $t_{i} \subseteq u \subseteq t$, so by convexity $u \in \mathcal{P}$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\prod_{\mathcal{P}}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

〇: Let $u \models \bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$. By $u \models \bigvee_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u$; assume for contradiction that $t_{i} \nsubseteq u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so by $u \models \bigwedge_{s \in \Pi \mathcal{P}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)$, we have $u \models\left(\chi_{y} \wedge \mathrm{NE}\right) \vee T$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime} \models \chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \notin u$, a contradiction. We now have $t_{i} \subseteq u \subseteq t$, so by convexity $u \in \mathcal{P}$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\prod_{\mathcal{P}}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

〇: Let $u \models \bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$. By $u \models \bigvee_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u$; assume for contradiction that $t_{i} \nsubseteq u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\prod_{\mathcal{P}}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

〇: Let $u \models \bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$. By $u \models \bigvee_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u$; assume for contradiction that $t_{i} \not \ddagger u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so by $u \vDash \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$, we have $u \models\left(\chi_{y} \wedge \mathrm{NE}\right) \vee \mathrm{T}$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime}=\chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \& u$, a contradiction We now have $t_{i} \subseteq u \subseteq t$, so by convexity $u \in \mathcal{P}$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\prod_{\mathcal{P}}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

〇: Let $u \models \bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$. By $u \models \bigvee_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u$; assume for contradiction that $t_{i} \not \ddagger u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so by $u \vDash \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$, we have $u \models\left(\chi_{y} \wedge \mathrm{NE}\right) \vee \mathrm{T}$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime} \models \chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \in u$, a contradiction.
We now have $t_{i} \subseteq u \subseteq t$, so by convexity $u \in \mathcal{P}$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\prod_{\mathcal{P}}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

〇: Let $u \models \bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$. By $u \models \bigvee_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u$; assume for contradiction that $t_{i} \not \ddagger u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so by $u \vDash \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$, we have $u \models\left(\chi_{y} \wedge \mathrm{NE}\right) \vee \mathrm{T}$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime} \models \chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \notin u$, a contradiction.
We now have $t_{i} \subseteq u \subseteq t$, so by convexity $u \in \mathcal{P}$.

Proposition

For any nonempty convex $\mathcal{P}=\left\{t_{1}, \ldots, t_{n}\right\}$ over N :

$$
\mathcal{P}=\left\|\bigvee_{t \in \mathcal{P}} \chi_{t}^{N} \wedge \bigwedge_{s \in \overline{\prod_{\mathcal{P}}}}\left(\left(\chi_{s}^{N} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right)\right\|_{N}
$$

Proof.

\subseteq : Let $t_{i} \in \mathcal{P}$. Then $t_{i} \models \chi_{t_{i}}$ so $t_{i} \models \mathbb{V}_{t \in \mathcal{P}} \chi_{t}$. If \mathcal{P} has the empty team property, $\overline{\Pi \mathcal{P}}=\varnothing$ so the second conjunct is T (we stipulate $\wedge \varnothing:=T$) and we are done. Otherwise let $s \in \overline{\Pi \mathcal{P}}$. We have $s=\left\{v_{1}, \ldots, v_{n}\right\}$ for some $v_{1} \in t_{1}, \ldots, v_{n} \in t_{n}$ so there is a $v_{i} \in s$ such that $v_{i} \in t_{i}$. Clearly $t_{i} \models\left(\chi_{v_{i}} \wedge N E\right) \vee T$. Therefore also $t_{i} \models\left(\left(\chi_{v_{i}} \vee \bigvee_{w \in s \backslash\left\{v_{i}\right\}} \chi_{w}\right) \wedge N E\right) \vee T$ whence $t_{i} \models\left(\chi_{s} \wedge N E\right) \vee T$.

〇: Let $u \models \bigvee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$. By $u \models \bigvee_{t \in \mathcal{P}} \chi_{t}$ there is some $t \in \mathcal{P}$ s.t. $u \models \chi_{t}$ whence $u \subseteq t$.
We show there is some $t_{i} \in \mathcal{P}$ s.t. $t_{i} \subseteq u$; assume for contradiction that $t_{i} \not \ddagger u$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin u$. We have $y:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so by $u \vDash \wedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)$, we have $u \vDash\left(\chi_{y} \wedge N E\right) \vee T$. But then there is a nonempty $u^{\prime} \subseteq u$ with $u^{\prime} \models \chi_{y}$ whence $u^{\prime} \subseteq y$. So there is some $v_{i} \in u^{\prime} \cap y$. But then $v_{i} \in u^{\prime} \subseteq u$ and $v_{i} \notin u$, a contradiction. We now have $t_{i} \subseteq u \subseteq t$, so by convexity $u \in \mathcal{P}$.

So we can capture all convex properties in $\operatorname{PL}(\mathrm{NE}, \mathbb{v})$, but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

This is not surprising given $\mathrm{PL}(\mathrm{NE}, \mathbb{V})$ is complete for all properties, but there is a more general issue with v : if ϕ or ψ is not union closed, $\phi \vee \psi$ might not be convex.

Let \mathbb{C} be the class of convex properties.

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$
where \vee is uniformly definable in \mathcal{L} if there is a formula $\theta_{v}(p, q) \in \mathcal{L}$ such that $\psi \vee \chi \equiv \theta_{\vee}(\psi / p, \chi / q)$ for all $\psi, \chi \in \mathcal{L}$. Note that due to failure of uniform substitution in team-based logics, it is possible that $\{\|\psi \vee \chi\| \mid \psi, \chi \in \mathcal{L}\} \subseteq\|\mathcal{L}\|$ without \vee being uniformly definable in \mathcal{L}.

So we can capture all convex properties in $\operatorname{PL}(\mathrm{NE}, \mathbb{v})$, but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

This is not surprising given $\mathrm{PL}(\mathrm{NE}, \mathrm{V})$ is complete for all properties, but there is a more general issue with \vee : if ϕ or ψ is not union closed, $\phi \vee \psi$ might not be convex.

Let \mathbb{C} be the class of convex properties.
\square
Fact
If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$
where v is uniformly definable in \mathcal{L} if there is a formula $\theta_{v}(p, q) \in \mathcal{L}$ such that $\psi \vee \chi \equiv \theta_{v}(\psi / p, \chi / q)$ for all $\psi, \chi \in \mathcal{L}$. Note that due to failure of uniform substitution in team-based logics, it is possible that $\{\|\psi \vee \chi\| \mid \psi, \chi \in \mathcal{L}\} \subseteq\|\mathcal{L}\|$ without \vee being uniformly definable in \mathcal{L}.

So we can capture all convex properties in $\operatorname{PL}(\mathrm{NE}, \mathfrak{v})$, but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

This is not surprising given $\mathrm{PL}(\mathrm{NE}, \mathrm{V})$ is complete for all properties, but there is a more general issue with \vee : if ϕ or ψ is not union closed, $\phi \vee \psi$ might not be convex.

Let \mathbb{C} be the class of convex properties.

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
where \vee is uniformly definable in \mathcal{L} if there is a formula $\theta_{\vee}(p, q) \in \mathcal{L}$ such that $\psi \vee \chi \equiv \theta_{\vee}(\psi / p, \chi / q)$ for all $\psi, \chi \in \mathcal{L}$. Note that due to failure of uniform substitution in team-based logics, it is possible that $\{\|\psi \vee \chi\| \mid \psi, \chi \in \mathcal{L}\} \subseteq\|\mathcal{L}\|$ without \vee being uniformly definable in \mathcal{L}.

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L} ，then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$ ．
To prove this fact，we recall the intuitionistic implication \rightarrow ：

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$ ．It is easy to see that $\|\psi\|$ is convex（the
first conjunct is downward closed；the second，upward closed）．Note also that $\|\psi\|$ is not union closed．
Let θ_{v} define \vee in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$ ．We show $\|\phi\|$ is not convex．Consider the following team t ：

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

$\left\{v_{3}\right\} \subseteq\left\{v_{2}, v_{3}\right\} \subseteq t, \phi$ is not convex.

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and \vee is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Therefore $t \models \psi \vee \psi$ so $t \models \phi$. Clearly also $\left\{v_{3}\right\} \models \psi$ so $\left\{v_{3}\right\} \models \phi$. Now assume
for contradiction that $\left\{v_{2}, v_{3}\right\} \models \phi$. Then $\left\{v_{2}, v_{3}\right\}=t_{1} \cup t_{2}$ where $t_{1} \models \psi$ and
$t_{2} \vDash \psi$. We cannot have $t_{i}=\left\{v_{2}\right\}$ because clearly $\left\{v_{2}\right\} \not \vDash \psi$. So one of the
subteams t_{i} must be $\left\{v_{2}, v_{3}\right\}$. But $\left\{v_{2}, v_{3}\right\} \not \vDash((p \wedge N E) \vee(\neg p \wedge N E)) \rightarrow q$. Since $\left\{v_{3}\right\} \subseteq\left\{v_{2}, v_{3}\right\} \subseteq t, \phi$ is not convex.

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$ $\mathrm{NE})) \rightarrow q$. Also $\left\{v_{1}, v_{2}\right\} \models(r \wedge \mathrm{NE}) \vee \mathrm{T}$ so $\left\{v_{1}, v_{2}\right\} \models \psi$. Similarly $\left\{v_{3}, v_{4}\right\} \vDash \psi$.
Therefore $t \models \psi \vee \psi$ so $t \vDash \phi$. Clearly also $\left\{v_{3}\right\} \models \psi$ so $\left\{v_{3}\right\} \models \phi$. Now assume
for contradiction that $\left\{v_{2}, v_{3}\right\} \models \phi$. Then $\left\{v_{2}, v_{3}\right\}=t_{1} \cup t_{2}$ where $t_{1} \models \psi$ and
$t_{2} \vDash \psi$. We cannot have $t_{i}=\left\{v_{2}\right\}$ because clearly $\left\{v_{2}\right\} \not \vDash \psi$. So one of the
subteams t_{i} must be $\left\{v_{2}, v_{3}\right\}$. But $\left\{v_{2}, v_{3}\right\} \not \models((p \wedge N E) \vee(\neg p \wedge N E)) \rightarrow q$. Since $\left\{v_{3}\right\} \subseteq\left\{v_{2}, v_{3}\right\} \subseteq t, \phi$ is not convex.

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and v is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and \vee is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and \vee is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and \vee is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

$\left\{v_{3}\right\} \subseteq\left\{v_{2}, v_{3}\right\} \subseteq t, \phi$ is not convex.

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and \vee is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

Fact

If $\mathbb{C} \subseteq\|\mathcal{L}\|$ and \vee is uniformly definable in \mathcal{L}, then $\|\mathcal{L}\| \nsubseteq \mathbb{C}$.
To prove this fact, we recall the intuitionistic implication \rightarrow :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \mathrm{T})$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed). Note also that $\|\psi\|$ is not union closed. Let θ_{v} define v in \mathcal{L} and let $\phi:=\theta_{v}(\psi, \psi)$. We show $\|\phi\|$ is not convex. Consider the following team t :

We have $\forall t \subseteq\left\{v_{1}, v_{2}\right\}: t \not \models(p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})$ so $\left\{v_{1}, v_{2}\right\} \vDash((p \wedge \mathrm{NE}) \vee(\neg p \wedge$

	p	q	r
v_{1}	1	0	1
v_{2}	1	0	0
v_{3}	0	0	1
v_{4}	0	0	0

To obtain a logic expressively complete for \mathcal{L}, we must therefore change the classical base of the logic.
Syntax of classical propositional logic with $\rightarrow \mathrm{PL}_{\rightarrow}$:

$$
\alpha::=p|\perp| \alpha \wedge \alpha \mid \alpha \rightarrow \alpha
$$

where $p \in \operatorname{Prop}$ and $s \models \perp \Longleftrightarrow s=\varnothing$. As with PL , it can be shown PL , is flat and its semantics correspond to standard semantics on singletons.

Syntax of $\mathrm{PL}_{\rightarrow}(\nabla)$:
∇ is an "epistemic might" operator which has been used to formalize epistemic contradictions:

Epistemic contradiction: \#lt is raining but it might not be raining. Formalized as: $r \wedge \nabla \neg r$. Contradiction: $r \wedge \nabla \neg r \models \Perp$.

[^3]To obtain a logic expressively complete for \mathcal{L}, we must therefore change the classical base of the logic.
Syntax of classical propositional logic with $\rightarrow \mathrm{PL}_{\rightarrow}$:

$$
\alpha::=p|\perp| \alpha \wedge \alpha \mid \alpha \rightarrow \alpha
$$

where $p \in \operatorname{Prop}$ and $s \models \perp \Longleftrightarrow s=\varnothing$. As with PL, it can be shown $\mathrm{PL}_{\rightarrow}$ is flat and its semantics correspond to standard semantics on singletons.

Syntax of $\mathrm{PL}_{\rightarrow}(\nabla)$:
∇ is an "epistemic might" operator which has been used to formalize epistemic contradictions:

Epistemic contradiction: \#It is raining but it might not be raining.
Formalized as: $r \wedge \nabla \neg r$. Contradiction: $r \wedge \nabla \neg r \models \Perp$.

[^4]To obtain a logic expressively complete for \mathcal{L}, we must therefore change the classical base of the logic.
Syntax of classical propositional logic with $\rightarrow \mathrm{PL}_{\rightarrow}$:

$$
\alpha::=p|\perp| \alpha \wedge \alpha \mid \alpha \rightarrow \alpha
$$

where $p \in \operatorname{Prop}$ and $s \models \perp \Longleftrightarrow s=\varnothing$. As with PL, it can be shown $\mathrm{PL}_{\rightarrow}$ is flat and its semantics correspond to standard semantics on singletons.

Syntax of $\mathrm{PL}_{\rightarrow}(\nabla)$:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \nabla \phi
$$

∇ is an "epistemic might" operator which has been used to formalize epistemic contradictions:

Epistemic contradiction: \#It is raining but it might not be raining.
Formalized as: $r \wedge \nabla \neg r$. Contradiction: $r \wedge \nabla \neg r \models \Perp$.

Note that $\nabla \phi \equiv(\phi \wedge \mathrm{NE}) \vee T$ and that $\mathrm{NE} \equiv \nabla \mathrm{T}$

To obtain a logic expressively complete for \mathcal{L}, we must therefore change the classical base of the logic.
Syntax of classical propositional logic with $\rightarrow \mathrm{PL}_{\rightarrow}$:

$$
\alpha::=p|\perp| \alpha \wedge \alpha \mid \alpha \rightarrow \alpha
$$

where $p \in \operatorname{Prop}$ and $s \models \perp \Longleftrightarrow s=\varnothing$. As with PL, it can be shown $\mathrm{PL}_{\rightarrow}$ is flat and its semantics correspond to standard semantics on singletons.

Syntax of $\mathrm{PL}_{\rightarrow}(\nabla)$:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \nabla \phi
$$

∇ is an "epistemic might" operator which has been used to formalize epistemic contradictions:

$$
\begin{aligned}
& \qquad s \models \nabla \phi \Longleftrightarrow \exists t \subseteq s: t \neq \varnothing \text { and } t \models \phi \\
& \text { Epistemic contradiction: \#lt is raining but it might not be raining. } \\
& \text { Formalized as: } r \wedge \nabla \neg r \text {. Contradiction: } r \wedge \nabla \neg r \models \Perp \text {. }
\end{aligned}
$$

To obtain a logic expressively complete for \mathcal{L}, we must therefore change the classical base of the logic.
Syntax of classical propositional logic with $\rightarrow \mathrm{PL}_{\rightarrow}$:

$$
\alpha::=p|\perp| \alpha \wedge \alpha \mid \alpha \rightarrow \alpha
$$

where $p \in \operatorname{Prop}$ and $s \models \perp \Longleftrightarrow s=\varnothing$. As with PL, it can be shown $\mathrm{PL}_{\rightarrow}$ is flat and its semantics correspond to standard semantics on singletons.

Syntax of $\mathrm{PL}_{\rightarrow}(\nabla)$:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \nabla \phi
$$

∇ is an "epistemic might" operator which has been used to formalize epistemic contradictions:

$$
s \models \nabla \phi \Longleftrightarrow \exists t \subseteq s: t \neq \varnothing \text { and } t \models \phi
$$

Epistemic contradiction: \#It is raining but it might not be raining.
Formalized as: $r \wedge \nabla \neg r$. Contradiction: $r \wedge \nabla \neg r \models \Perp$.

To obtain a logic expressively complete for \mathcal{L} ，we must therefore change the classical base of the logic．
Syntax of classical propositional logic with $\rightarrow \mathrm{PL}_{\rightarrow}$ ：

$$
\alpha::=p|\perp| \alpha \wedge \alpha \mid \alpha \rightarrow \alpha
$$

where $p \in \operatorname{Prop}$ and $s \models \perp \Longleftrightarrow s=\varnothing$ ．As with PL，it can be shown $\mathrm{PL}_{\rightarrow}$ is flat and its semantics correspond to standard semantics on singletons．

Syntax of $\mathrm{PL}_{\rightarrow}(\nabla)$ ：

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \nabla \phi
$$

∇ is an＂epistemic might＂operator which has been used to formalize epistemic contradictions：

$$
s \models \nabla \phi \Longleftrightarrow \exists t \subseteq s: t \neq \varnothing \text { and } t \models \phi
$$

Epistemic contradiction：\＃It is raining but it might not be raining．
Formalized as：$r \wedge \nabla \neg r$ ．Contradiction：$r \wedge \nabla \neg r \models \Perp$ ．

Note that $\nabla \phi \equiv(\phi \wedge \mathrm{NE}) \vee \mathrm{T}$ and that $\mathrm{NE} \equiv \nabla \mathrm{T}$ ．

Proposition

$\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\| \subseteq \mathbb{C}$ (i.e., $\mathrm{PL}_{\rightarrow}(\nabla)$ is convex).

Proof.

p, \perp are flat and and hence convex. $\phi \rightarrow \psi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

To show $\mathbb{C} \subseteq\left\|P L_{\rightarrow}(\nabla)\right\|$, it suffices by what we have shown above to show that

- $\|\Perp\| \epsilon\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\|$
- for all non-empty $\mathcal{P} \in \mathbb{C}_{,}\left\|V_{t \in P} \chi_{t} \wedge \wedge_{s \in \Pi_{P}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)\right\| \in\|P L \rightarrow(\nabla)\|$

We have $\|\Perp\|=\|\nabla \perp\| \in\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\|$. We also have

(On the right we define $\chi_{s}:=\neg \bigwedge_{v \in s} \neg \chi_{v}$ where $\neg \phi:=\phi \rightarrow \perp$ instead of $\chi_{s}=\bigvee_{v \in s} \chi_{v}$.)
It therefore suffices to show $\left\|\mathbb{V}_{i \in!} \alpha_{i}\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$ for $\alpha_{i} \in \mathbf{P L}_{\rightarrow}$.

Proposition

$\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\| \subseteq \mathbb{C}$ (i.e., $\mathrm{PL}_{\rightarrow}(\nabla)$ is convex).

Proof.

p, \perp are flat and and hence convex. $\phi \rightarrow \psi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

To show $\mathbb{C} \subseteq\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$, it suffices by what we have shown above to show that

- $\|\Perp\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$
- for all non-empty $\mathcal{P} \in \mathbb{C},\left\|\mathbb{V}_{t \in \mathrm{P}} \chi_{ \pm} \wedge \wedge_{s \in \Pi \mathrm{P}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)\right\| \in\|\mathrm{PL} \rightarrow(\nabla)\|$ We have $\|\Perp\|=\|\nabla \perp\| \in\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\|$. We also have
(On the right we define $\chi_{s}:=\neg \bigwedge_{v \in s} \neg \chi_{v}$ where $\neg \phi:=\phi \rightarrow \perp$ instead of $\chi_{s}=\bigvee_{v \in s} \chi_{v}$.) It therefore suffices to show $\left\|\mathbb{V}_{i \in \mid} \alpha_{i}\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$ for $\alpha_{i} \in \mathbf{P L}_{\rightarrow}$.

Proposition

$\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\| \subseteq \mathbb{C}$ (i.e., $\mathrm{PL}_{\rightarrow}(\nabla)$ is convex).

Proof.

p, \perp are flat and and hence convex. $\phi \rightarrow \psi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

To show $\mathbb{C} \subseteq\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\|$, it suffices by what we have shown above to show that

- $\|\Perp\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$
- for all non-empty $\mathcal{P} \in \mathbb{C},\left\|\bigvee_{t \in \mathbf{P}} \chi_{t} \wedge \wedge_{s \in \bar{\Pi} \mathbf{P}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$ We have $\|\Perp\|=\|\nabla \perp\| \in\left\|P L_{\rightarrow}(\nabla)\right\|$. We also have
(On the right we define $\chi_{s}:=\neg \bigwedge_{v \in s} \neg \chi_{v}$ where $\neg \phi:=\phi \rightarrow \perp$ instead of $\chi_{s}=\bigvee_{v \in s} \chi_{v}$.)
It therefore suffices to show $\left\|\mathbb{V}_{i \in \mid} \alpha_{i}\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$ for $\alpha_{i} \in \mathbf{P L}_{\rightarrow}$.

Proposition

$\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\| \subseteq \mathbb{C}$ (i.e., $\mathrm{PL}_{\rightarrow}(\nabla)$ is convex).

Proof.

p, \perp are flat and and hence convex. $\phi \rightarrow \psi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

To show $\mathbb{C} \subseteq\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\|$, it suffices by what we have shown above to show that

- $\|\Perp\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$
- for all non-empty $\mathcal{P} \in \mathbb{C},\left\|\backslash \bigvee_{t \in \mathbf{P}} \chi_{t} \wedge \wedge_{s \in \bar{\Pi} \mathbf{P}}\left(\left(\chi_{s} \wedge N E\right) \vee T\right)\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$

We have $\|\Perp\|=\|\nabla \perp\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$. We also have
(On the right we define $\chi_{s}:=\neg \bigwedge_{v \in s} \neg \chi_{v}$ where $\neg \phi:=\phi \rightarrow \perp$ instead of $\chi_{s}=\bigvee_{v \in s} \chi_{v}$.)
It therefore suffices to show $\left\|\mathbb{V}_{i \in \mid} \alpha_{i}\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$ for $\alpha_{i} \in \mathbf{P L}_{\rightarrow}$.

Proposition

$\left\|\mathrm{PL}_{\rightarrow}(\nabla)\right\| \subseteq \mathbb{C}$ (i.e., $\mathrm{PL}_{\rightarrow}(\nabla)$ is convex).

Proof.

p, \perp are flat and and hence convex. $\phi \rightarrow \psi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

To show $\mathbb{C} \subseteq\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$, it suffices by what we have shown above to show that

- $\|\Perp\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$
- for all non-empty $\mathcal{P} \in \mathbb{C},\left\|\bigvee_{t \in \mathbf{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathbf{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$

We have $\|\Perp\|=\|\nabla \perp\| \epsilon\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$. We also have

$$
\bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right) \equiv \bigwedge_{s \in \overline{\Pi \mathcal{P}}} \nabla \chi_{s}
$$

(On the right we define $\chi_{s}:=\neg \bigwedge_{v \in s} \neg \chi_{v}$ where $\neg \phi:=\phi \rightarrow \perp$ instead of $\chi_{s}=\bigvee_{v \in s} \chi_{v}$.)

[^5]
Proposition

$\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\| \subseteq \mathbb{C}$ (i.e., $\mathrm{PL}_{\rightarrow}(\nabla)$ is convex).

Proof.

p, \perp are flat and and hence convex. $\phi \rightarrow \psi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

To show $\mathbb{C} \subseteq\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$, it suffices by what we have shown above to show that

- $\|\Perp\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$
- for all non-empty $\mathcal{P} \in \mathbb{C},\left\|\bigvee_{t \in \mathbf{P}} \chi_{t} \wedge \wedge_{s \in \overline{\Pi \mathbf{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$

We have $\|\Perp\|=\|\nabla \perp\| \epsilon\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$. We also have

$$
\bigwedge_{s \in \overline{\Pi \mathcal{P}}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee \mathrm{T}\right) \equiv \bigwedge_{s \in \overline{\Pi \mathcal{P}}} \nabla \chi_{s}
$$

(On the right we define $\chi_{s}:=\neg \bigwedge_{v \in s} \neg \chi_{v}$ where $\neg \phi:=\phi \rightarrow \perp$ instead of $\chi_{s}=\bigvee_{v \in s} \chi_{v}$.)
It therefore suffices to show $\left\|\bigvee_{i \in I} \alpha_{i}\right\| \in\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|$ for $\alpha_{i} \in \mathbf{P L}_{\rightarrow}$.

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in 1}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{v} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in \mid} \alpha_{i}$

Proof.
\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \Lambda \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

Theorem

We define:

$$
\bigvee_{i \in 1} \alpha_{i}:=\bigwedge_{i \in 1}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{v} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \vDash \alpha_{i}$.

Proof.

Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$,
$\Longleftarrow:$ Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \models \alpha_{i}$. By flatness, for each $i \in /$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in I \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash\{k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

Theorem

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \models \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$.
all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$
 $t \models\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

Theorem

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$ \Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \models\left(\bigwedge_{j \in \Lambda \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \Lambda_{j \in \backslash \backslash\{k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

Theorem

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t=\alpha_{i}$
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

Theorem

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \Lambda \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.

Theorem

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \Lambda \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
\Longleftarrow : Let $t \models \alpha_{i}$.

Theorem

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \Vdash \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \Lambda \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash\{k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

Theorem

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
$\Longleftarrow:$ Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \models\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. because $s \models \alpha_{i}$. Therefore $t \models\left(\Lambda_{j \in / \backslash k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \models\left(\bigwedge_{j \in / \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \vDash \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \neq \alpha_{i}$. Therefore $t=\left(\Lambda_{i} / \wedge(\square) \nabla \alpha_{i}\right) \rightarrow \alpha_{k}$.

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$.

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
\Longleftarrow : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in Л \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \epsilon \wedge \backslash k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

We define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{} \beta=(\nabla \neg \alpha \rightarrow \beta) \wedge(\nabla \neg \beta \rightarrow \alpha)
$$

Lemma

$t \models \mathbb{V}_{i \epsilon I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i}$.

Proof.

\Longrightarrow : Assume for contradiction that for each $i \in I, t \not \vDash \alpha_{i}$. By flatness, for each $i \in I$ there is some $v_{i} \in t$ with $v_{i} \models \neg \alpha_{i}$. Then for each $i \in I, t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_{i}$.
$\Longleftarrow:$ Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \epsilon \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in Л \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \epsilon / \backslash\{k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

Theorem

$$
\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\|=\mathbb{C}
$$

Updated picture:

Normal forms

Logic	Normal Form	Type of property characterized
PL	$\mathrm{V}_{s \in \mathcal{P}} \chi_{s}$	Flat
$\mathrm{PL}(\mathbb{V}$ ）	$\mathbb{V}_{s \in \mathcal{P}} \chi_{s}$	Downward closed，empty team property
PL（＝（ \cdot ）	$\wedge_{s \in 2^{N}{ }^{\text {N }} \mathcal{P}_{N}\left(\gamma_{s} \vee \chi_{2}{ }^{N} _{s}\right)}$	Downward closed，empty team property
$\mathrm{PL}(\subseteq)$	$\vee_{s \in \mathcal{P}}\left(\chi_{s} \wedge \wedge_{v \in s} T \subseteq \chi_{v}\right)$	Union closed，empty team property
$\mathrm{PL}(\subseteq, \mathbb{V})$	$\mathbb{V}_{\text {s¢P }}\left(\chi_{s} \wedge \wedge_{v \in S} T \subseteq \chi_{v}\right)$	Empty team property
PL（NE，©）	$\bigvee_{s \in \mathcal{P}} \oslash V_{v \in s}\left(\chi_{v} \wedge\right.$ NE）	Union closed
PL（ne，v ）	$\mathbb{V}_{s \in \mathcal{P}} V_{v \in s}\left(\chi_{v} \wedge \mathrm{NE}\right)$	All properties
PL（ne）	$\vee_{s \in \overline{\Pi P}}\left(\chi_{s} \wedge\right.$ NE）	Convex，union closed
PL（ne）	$\vee_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \bar{\Pi}}\left(\left(\chi_{s} \wedge \mathrm{NE}\right) \vee T\right)$	Convex，union closed
	$\wedge_{s \in \overline{\Pi \prime P}}\left(\left(\chi_{s} \wedge\right.\right.$ NE $\left.) \vee T\right)$	Upward closed
$\mathrm{PL}_{\rightarrow}(\nabla)$	$\mathbb{V}_{t \in \mathcal{P}} \chi_{t} \wedge \wedge_{s \in \bar{\Pi}}\left(\left(\chi_{s} \wedge\right.\right.$ NE $\left.) \vee T\right)$	Convex

（For the $\operatorname{PL}(=(\cdot))$－normal form，define $\gamma_{0}^{s}:=\perp ; \gamma_{1}^{s}:=\Lambda\{=(p) \mid p \in \operatorname{dom}(s)\} \gamma_{n}:=\bigvee_{1}^{n} \gamma_{1}$ for $n \geq 2$ ．）
$\left(\ln \mathrm{PL}_{\rightarrow}(\nabla), \mathbb{V}_{i \in 1} \alpha_{i}:=\bigwedge_{i \epsilon l}\left(\left(\bigwedge_{j \in \backslash \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)\right.$ ．）

Relationship with inquisitive logic: InqB, propositional inquisitive logic, has the syntax:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \phi \mathbb{\vee} \phi
$$

$\operatorname{Inq} B$ is expressively complete for downward-closed properties with the empty state property, so $\|I n q B\| \subset\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\| . \Vdash_{V}$ is not uniformly definable in general in $\mathbf{P L}_{\rightarrow}(\nabla)$ since $\mathbf{P L}_{\rightarrow}(\nabla, \vee)$ is not convex.

Similar logics which are either not convex or cannot express all convex properties:
PI (w, ∇) (propositional inquisitive logic with ∇) is not convex. Example: $(p \wedge \nabla q) \mathbb{V}(a \wedge \nabla b)$
$P L_{\rightarrow}(\mathrm{NE})$ is not complete for convex properties because it is "downward closed modulo the empty team" : $s \models \phi$ and $t \subseteq s$ where $t \neq \varnothing$ imply $t \models \phi$. Similarly for $P L_{\rightarrow}(N E, \mathbb{V})$.

Relationship with inquisitive logic：InqB，propositional inquisitive logic，has the syntax：

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \phi \mathbb{V} \phi
$$

$\operatorname{Inq} B$ is expressively complete for downward－closed properties with the empty state property，so $\|\operatorname{Inq} B\| \subset\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\| . \Downarrow$ is not uniformly definable in general in $\mathbf{P L}_{\rightarrow}(\nabla)$ since $\mathbf{P L}_{\rightarrow}(\nabla, \mathbb{v})$ is not convex．

Similar logics which are either not convex or cannot express all convex properties：
$P L_{\rightarrow}(\mathbb{V}, \nabla)$（propositional inquisitive logic with ∇ ）is not convex．Example：$(p \wedge \nabla q) \mathbb{V}(a \wedge \nabla b)$.
$P L_{\rightarrow}(\mathrm{NE})$ is not complete for convex properties because it is＂downward closed modulo the empty team＂：$s \models \phi$ and $t \subseteq s$ where $t \neq \varnothing$ imply $t \models \phi$ ．Similarly for $P L_{\rightarrow}(\mathrm{NE}, \mathbb{V})$ ．

Relationship with inquisitive logic：InqB，propositional inquisitive logic，has the syntax：

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \phi \mathbb{\vee} \phi
$$

$\operatorname{Inq} B$ is expressively complete for downward－closed properties with the empty state property，so $\|I n q B\| \subset\left\|\mathbf{P L}_{\rightarrow}(\nabla)\right\| . \Downarrow$ is not uniformly definable in general in $\mathbf{P L}_{\rightarrow}(\nabla)$ since $\mathbf{P L}_{\rightarrow}(\nabla, \mathbb{v})$ is not convex．

Similar logics which are either not convex or cannot express all convex properties：
$P L_{\rightarrow}(\mathbb{V}, \nabla)$（propositional inquisitive logic with ∇ ）is not convex．Example：$(p \wedge \nabla q) \vee(a \wedge \nabla b)$ ． $P L_{\rightarrow}(\mathrm{NE})$ is not complete for convex properties because it is＂downward closed modulo the empty team＂：$s \models \phi$ and $t \subseteq s$ where $t \neq \varnothing$ imply $t \models \phi$ ．Similarly for $P L_{\rightarrow}(\mathrm{NE}, \mathbb{V})$ ．

[^0]: Therefore $u \models \psi \vee \chi$

[^1]: Therefore $u \models \psi \vee \chi$

[^2]: We show $t \subseteq \bigcup \mathcal{P}$; assume for contradiction that $t \not \ddagger \bigcup \mathcal{P}$. Then there is a $v \in t$ such that $v \notin t_{i}$ for all $t_{i} \in \mathcal{P}$. Then for any $s \in \overline{\Pi \mathcal{P}}, v \notin s$. By $t=\bigcup_{s \in \overline{\Pi \mathcal{P}}} t_{s}$ we must have $v \in t_{s}$ for some $s \in \overline{\Pi \mathcal{P}}$, where $t_{s} \models \chi_{s} \wedge$ NE. But then $v \in t_{s} \subseteq s$ and $v \notin s$, a contradiction.
 We now show $t_{i} \subseteq t$ for some $t_{i} \in \mathcal{P}$; assume for contradiction that $t_{i} \nsubseteq t$ for all $t_{i} \in \mathcal{P}$. Then for each $t_{i} \in \mathcal{P}$ there is a $v_{i} \in t_{i}$ such that $v_{i} \notin t$. We have $u:=\left\{v_{i} \mid t_{i} \in \mathcal{P}\right\} \in \overline{\Pi \mathcal{P}}$ so $t_{s} \models \chi_{u} \wedge$ NE for some $t_{s} \subseteq t$. Then $t_{s} \subseteq u$ and $t_{s} \neq \varnothing$ so there is some $v_{i} \in t_{s} \cap u$. But then $v_{i} \in t_{s} \subseteq t$ and $v_{i} \notin t$, a contradiction. We now have $t_{i} \subseteq t \subseteq \bigcup \mathcal{P}$. $\cup \mathcal{P} \in \mathcal{P}$ by union closure, and therefore $t \in \mathcal{P}$ by convexity.

[^3]: Note that $\nabla \phi \equiv(\phi \wedge \mathrm{NE}) \vee T$ and that $\mathrm{NE} \equiv \nabla \mathrm{T}$.

[^4]: Note that $\nabla \phi \equiv(\phi \wedge \mathrm{NE}) \vee T$ and that $\mathrm{NE} \equiv \nabla \mathrm{T}$.

[^5]: It therefore suffices to show $\left\|\mathbb{V}_{i \in I} \alpha_{i}\left|\in \| P L_{\rightarrow}(\nabla)\right| \mid\right.$ for $\alpha_{i} \in \mathbf{P L} \rightarrow$

